본 논문에서는 다수의 이동 가능한 관리 대상을 소수의 관리자가 효율적으로 관리하기 위하여 Ad-hoc 네트워크 환경에서 DSDV(Destination Sequenced Distance Vector) 라우팅 알고리즘을 활용하는 위치 정보 시스템을 구현한다. 제안된 시스템에서는 다수의 위치 정보 노드들이 Ad-hoc 네트워크 환경에서 DSDV 라우팅 알고리즘으로 네트워크를 구축하고, 구축된 네트워크에서 하나 이상의 위치 정보 노드가 사라지면 진동과 같은 경고 시스템을 활성화한다. 또한 제안된 시스템은 안드로이드 환경에서 블루투스 통신을 통해 시각적으로 노드들의 위치를 확인시켜 주어 관리 대상에 대한 관리를 도와준다. 본 시스템으로 모의 성능 평가를 수행한 결과, 사용자 위치 정보 노드 간 1:1 통신을 직선거리에서 수행하였을 때, 약 250m까지 통신이 가능하였으며, 1:N 통신의 경우 약 100m 이내의 거리에서 정상적으로 통신이 이루어지는 것을 확인하였다. 본 논문에서 구현된 시스템은 유치원 아동 관리 시스템, 놀이공원 미아 방지 시스템, 관광객 관리 시스템 등 여러 시스템에 매우 유연하게 적용이 가능하여, 그 활용도가 높을 것으로 예상된다.
International Journal of Internet, Broadcasting and Communication
/
v.15
no.2
/
pp.124-132
/
2023
In this paper, we present a simple classification model based on statistical features and demonstrate the successful implementation of a brain-computer interface (BCI) based light on/off control system. This research shows study and development of light on/off control system based on BCI technology, which allows the users to control switching a lamp using electroencephalogram (EEG) signals. The logistic regression algorithm is used for classification of the EEG signal to convert it into light on, light off control commands. Training data were collected using 14-channel BCI system which records the brain signals of participants watching a screen with flickering lights and saves the data into .csv file for future analysis. After extracting a number of features from the data and performing classification using logistic regression, we created commands to switch on a physical lamp and tested it in a real environment. Logistic regression allowed us to quite accurately classify the EEG signals based on the user's mental state and we were able to classify the EEG signals with 82.5% accuracy, producing reliable commands for turning on and off the light.
Ghadeer H. Al-Malkawi;Al-Montaser Bellah A. Al-Ajlony;Khaled F. Al-Shboul;Ahmed Hassanein
Nuclear Engineering and Technology
/
v.55
no.4
/
pp.1287-1299
/
2023
A new Monte-Carlo-based computer program (RDS-BASIC) is developed to simulate the transport of energetic ions in pure matter. This computer program is utilizing an algorithm that uses detailed numerical solutions for the classical scattering integral for evaluating the outcomes of the binary collision processes. This approach is adopted by several prominent similar simulation programs and is known to provide results with higher accuracy compared to other approaches that use approximations to shorten the simulation time. Furthermore, RDS-BASIC simulation program contains special methods to reduce the displacement energy threshold of surface atoms. This implementation is found essential for accurate simulation results for sputtering yield in the case of very low energy ions irradiation (near sputtering energy threshold) and also successfully solve the problem of simultaneously obtaining an acceptable number of atomic displacements per incident ions. Results of our simulation for several irradiation systems are presented and compared with their respective TRIM (SRIM-2013) and the state-of-the-art SDTrimSP simulation results. Our sputtering simulation results were also compared with available experimental data. The simulation execution time for these different simulation programs has also been compared.
순위다중패턴매칭문제는 길이가 n인 텍스트 T와 패턴들의 집합 P' = {P1,P2…,Pk}가 주어졌을 때, P'에 속하는 패턴들과 상대적인 순위가 일치하는 T의 모든 부분문자열들의 위치를 찾는 문제이다. P'에서 가장 짧은 패턴의 길이가 m, 가장 긴 패턴의 길이를 $\bar{m}$, 모든 패턴들의 길이의 합을 M, q개의 연속된 문자들을 q-그램이라 할 때, 기존에 텍스트의 핑거프린트를 이용하여 순위다중패턴매칭문제를 $O(q!+nqlogq+Mlog\bar{m}+nM)$ 시간에 해결하는 알고리즘이 제시되었다. 본 논문에서는 텍스트의 핑거프린트를 활용하여 O(max(q!,M,n))개의 스레드를 이용하여 순위다중패턴매칭문제를 평균적으로 $O(\bar{m}+qlogq+n/q!)$ 시간에 해결하는 병렬 구현 방법을 제시한다. 실험 결과, n = 1,000,000, k = 1,000, m = 5, q = 3일 때, 본 논문에서 제시하는 병렬 구현 방법은 기존의 순차 알고리즘보다 약 19.8배 빠르게 수행되었다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.577-578
/
2021
Recently, artificial intelligence systems are being used in various fields. The accuracy of the decision algorithm of artificial intelligence is greatly affected by the amount of learning and the accuracy of the learning data. In the case of the amount of learning, a large amount of data is required because it has a decisive effect on the performance of AI. In this paper, we propose a data collection system for constructing a system that analyzes future conditions and changes in infants' conditions based on the body temperature data of infants and toddlers. The proposed system is a system that collects and transmits data, and it is believed that it can minimize the resource consumption of the server system in existing big data analysis and training data construction.
ICISC'19에서 기존 CHAM과 동일한 구조와 규격을 갖지만, 라운드 수만 증가시킨 revised CHAM이 발표되었다. CHAM은 사물인터넷에서 사용되는 저사양 프로세서에서 효율적인 구현이 가능한 특징을 갖고 있다. AVR, ARM 프로세서 상에서의 CHAM 암호 알고리즘에 대한 최적 구현은 존재하지만, 아직 RISC-V 프로세서 상에서의 CHAM 구현은 존재하지 않는다. 따라서, 본 논문에서는 RISC-V 프로세서 상에서의 Revised CHAM 알고리즘을 최초로 구현을 제안한다. CHAM 라운드 함수의 내부 구조의 일부를 생략하여 최적 구현하였다. 그리고 홀수 라운드와 짝수 라운드를 모듈별로 구현하여 필요에 따라 모듈을 호출하여 손쉽게 사용할 수 있게 하였다. 결과적으로, RISC-V 상에서 제안 기법 적용하기 전보다 제안 기법 적용 후에 12%의 속도 향상을 달성하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.385-387
/
2021
Marine deposition waste threatens the book ecosystem and causes a decrease in catch due to ghost fishing, causing damage of about 370 billion won per year. In order to collect this, a current status survey is conducted using two-way ultrasonic detectors, diving, and lifting frames. However, the scope of the investigation is small to investigate a lot of sedimentary waste, and there is a possibility of causing casualties. This paper deals with the implementation of a high-accuracy marine deposition detection AI model by learning the coastal sediment image data of AI-Hub using the YOLOv5 algorithm suitable for real-time object detection.
Communications for Statistical Applications and Methods
/
v.30
no.4
/
pp.369-388
/
2023
In this paper, we develop the two-step procedure that detects and estimates the position of structural changes for multivariate nonstationary time series, either on mean parameters or second-order structures. We first investigate the presence of mean structural change by monitoring data through the aggregated cumulative sum (CUSUM) type statistic, a sequential procedure identifying the likely position of the change point on its trend. If no mean change point is detected, the proposed method proceeds to scan the second-order structural change by modeling the multivariate nonstationary time series with a multivariate locally stationary Wavelet process, allowing the time-localized auto-correlation and cross-dependence. Under this framework, the estimated dynamic spectral matrices derived from the local wavelet periodogram capture the time-evolving scale-specific auto- and cross-dependence features of data. We then monitor the change point from the lower-dimensional approximated space of the spectral matrices over time by applying the dynamic principal component analysis. Different from existing methods requiring prior information on the type of changes between mean and covariance structures as an input for the implementation, the proposed algorithm provides the output indicating the type of change and the estimated location of its occurrence. The performance of the proposed method is demonstrated in simulations and the analysis of two real finance datasets.
International Journal of Computer Science & Network Security
/
v.23
no.7
/
pp.71-78
/
2023
Employee turnover is one of the most important challenges facing modern organizations. It causes job experiences and skills such as distinguished faculty members in universities, rare-specialized doctors, innovative engineers, and senior administrators. HR analytics has enhanced the area of data analytics to an extent that institutions can figure out their employees' characteristics; where inaccuracy leads to incorrect decision making. This paper aims to develop a novel model that can help decision-makers to classify the problem of Employee Turnover. By using feature selection methods: Information Gain and Chi-Square, the most important four features have been extracted from the dataset. These features are over time, job level, salary, and years in the organization. As one of the important results of this research, these features should be planned carefully to keep organizations their employees as valuable assets. The proposed model based on machine learning algorithms. Classification algorithms were used to implement the model such as Decision Tree, SVM, Random Frost, Neuronal Network, and Naive Bayes. The model was trained and tested by using a dataset that consists of 1470 records and 25 features. To develop the research model, many experiments had been conducted to find the best one. Based on implementation results, the Neural Network algorithm is selected as the best one with an Accuracy of 84 percents and AUC (ROC) 74 percents. By validation mechanism, the model is acceptable and reliable to help origination decision-makers to manage their employees in a good manner.
Three-dimensional (3D) models have become crucial for improving civil infrastructure analysis, and they can be used for various purposes such as damage detection, risk estimation, resolving potential safety issues, alarm detection, and structural health monitoring. 3D point cloud data is used not only to make visual models but also to analyze the states of structures and to monitor them using semantic data. This study proposes automating the generation of high-quality 3D point cloud data and removing noise using deep learning algorithms. In this study, large-format aerial images of civilian infrastructure, such as cut slopes and dams, which were captured by drones, were used to develop a workflow for automatically generating a 3D point cloud model. Through image cropping, downscaling/upscaling, semantic segmentation, generation of segmentation masks, and implementation of region extraction algorithms, the generation of the point cloud was automated. Compared with the method wherein the point cloud model is generated from raw images, our method could effectively improve the quality of the model, remove noise, and reduce the processing time. The results showed that the size of the 3D point cloud model created using the proposed method was significantly reduced; the number of points was reduced by 20-50%, and distant points were recognized as noise. This method can be applied to the automatic generation of high-quality 3D point cloud models of civil infrastructures using aerial imagery.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.