• Title/Summary/Keyword: implant surface

Search Result 970, Processing Time 0.026 seconds

A Study on the Loss of Tooth Substance and Surface Changes following Root Planing (치근면 활택술후 치질삭제와 표면형태변화에 관한 연구)

  • Heo, Soo-Rye;Kim, Soo-Ah;Seo, Seok-Ran;Kim, Hyoug-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.351-372
    • /
    • 1998
  • The purpose of this study was to evaluate in vitro effects of the loss of tooth substance and root surface changes following root planing with various periodontal instruments. The 39 extracted human teeth due to severe periodontal disease were included. The total 50 root surfaces of 30 teeth were root planed with following instruments : Group 1, with Gracey curette, Group 2, with ultrasonic scaler, Group 3, with rotating root planing bur, Group 4, with Gracey curette plus rubber cup polishing, and Group 5, with ultrasonic scaler plus rubber cup polishing. Following root planing, the amount of tooth substance loss was evaluated by measuring the weight of the removed tooth substance and then 5 specimens ($5{\times}5{\times}2mm$) were randomly selected from the each group for roughness measurement. Root planed areas of each specimen were subjected to five measurements using the Profilometer and an average surface roughness values(Ra) for each group was obtained. Statistical difference for roughness values of each group was analyzed using oneway ANOVA and student t-test. For scanning electron microscopic(SEM) examination of root surface changes following root planing, 15 root surfaces of remaining 9 teeth were root planed and 3 specimens were randomly selected. The mean loss of tooth substance removed was Group 1, $7.0{\pm}1.09mg$, Group 2, $1.3{\pm}1.00mg$, Group 3, $5.8{\pm}1.72mg$, Group 4, $8.7{\pm}1.34mg$, and Group 5, $4.5{\pm}1.68mg$ following root palning, respectively. These results indicate that curette is effective instrument in the respect of diseased root substance removal. The average surface roughness values are following results : Group 1 and Group 4 were the smoothest surface ($Ra=0.34{\pm}0.06{\mu}m$, $Ra=0.34{\pm}0.04{\mu}m$, respectively) and Group 2 was the roughest surface ($Ra=2.09{\pm}0.06{\mu}m$). Statistical analysis of roughness values demonstrated a highly significant difference (P<0.05) between each experimental groups. However, no statistically significant difference in roughness values were observed between the Group 1 and Group 4. The results in this study suggest that curette and/or polishing procedure should be done after root planing with ultrasonic scaler and caution should be used with dia-mond-coated bur during routine root planing procedure.

  • PDF

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

Bending strength of alumina coated with bioglass and soda lime glass and the precipitation on the surface of coated alumina in PBS (생체 유리와 소다 유리침투에 따른 알루미나 세라믹의 굴곡 강도 및 PBS에서의 표면 생성물 연구)

  • Yuu, Jae-Yang
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2008
  • Titanium and its alloys are widely used as dental implants materials because of their excellent mechanical properties. However, the alumina and zirconia ceramics are preferred to use as the substitute of Ti implants because there is a problems in esthetics and biocompatibility in Ti implant. The the glass infiltrated alumina ceramics are studied to increase the toughness and biocompatibility. The 45S5 and soda-lime glass powder was mixed with ethanol at ratio of 1:1 and brushed on the surface of alumina. Then it was heat treated in the electric furnace at $1400^{\circ}C$ from 30 min. to 5 hours. The glass powder was controlled from 200 to $350{\mu}m$ using ball milling. After heat treatment, the glass infiltrated specimen was tested in universal testing machine to measure the bending strength. The surface microstructure of each specimen was observed with SEM. The biocompatibility of 45S5 and soda-lime glass coated alumina was investigated using PBS at $36.5^{\circ}C$ incubator. The specimen was immersed in PBS for 3, 5, 7, 10 days. After that, the surface morphology was investigated with SEM. As the results of experiment, the 45S5 bioglass infiltrated alumina show the increase of bending strength according to the increasing of heat treatment time from 30 min. to 5 hours at $1400^{\circ}C$ Finally the 1370N bending strength of alumina increased to 1958N at 5 hours heat treatment, which shows 1.4 times higher. In contrast to this, the soda lime glass infiltrated alumina ceramics shows the convex curve according to heat treatment time. Thus it shows maximum bending strength of 1820N at 1 hour heat treatment of $1400^{\circ}C$ It gives 1.3 times higher. However, the bending strength of soda lime glass infiltrated alumina is decreasing with increasing heat treatment time after 1 hour. The precipitation on the surface of 45S5 glass infiltrated alumina was revealed as a sodium phosphate ($Na_{6}P_{6}O_{24}6H_{2}O$) and the amount of precipitation is increasing with increasing of immersion time in PBS. In contrast to this, there is no precipitation are observed on the surface of soda lime glass infiltrated alumina. This implies that 45S5 glass infiltrated alumina brings more biocompatible when it is implanted in human body.

  • PDF

Effect of NaF iontophoresis and Nd:YAG laser irradiation on the abrasion-resistance of root surface (불화나트륨 이온도포와 Nd:YAG laser 조사가 치근면 내마모성에 미치는 영향)

  • Kim, Chin-Dok;Yum, Chang-Yup;Kim, Song-Uk;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.819-828
    • /
    • 1997
  • The purpose of this study was to evaluate the abrasion-resistance of root surface after NaF iontophoresis, Nd:YAG laser irradiation and combined treatment 50 anterior teeth with flat interproximal root surface that had been extracted due to periodontal destruction were selected. All teeth were treated by the same procedure as conventional periodontal root treatment, such as scaling and root planing, root conditioning with tetracycline HCI(lOOmg/ml, 5min). The pre-treatment weight of each tooth was measured by a dial scale(SHIMADEU Co, LIBROR EB-220HU, capacity 220.000 g, Japan). All teeth were divided into 5 groups as follows: Nd:YAG laser irradiation(group 1, 1 W, 100 mJ, 10Hz, fiberoptic-root surface distance=5mm, $10\;sec.{\times}6times$, EL.EN.EN060, Italy): NaF iontophoresis(group 2, $150{\mu}A$, 4 min}: Nd:YAG laser irradiation following NaF iontophoresis(group 3): NaF iontophoresis following Nd:YAG laser irradiation(group 4): No treatment(control group). Electric toothbrushing (Oral-B, Brown Co, Germany) was conducted during 1 hour($lO\;min.{\times}6\;times$). Subsequently post-treatment weight was remeasured by the same method as pre-treatment weight measurement. The difference of abrasion rate among all groups was statistically analyzed by ANOVA(SAS program). Following results were obtained: 1. The abrasion rate was significantly lower in Nd:YAG laser irradiation group than NaF iontophoresis group(p < 0.001). 2. The abrasion rate was significantly lower in combined groups of Nd:YAG laser irradiation and NaF iontophoresis than either Nd:YAG laser irradiation group or NaF iontophoresis group(p < 0.001). 3. There was no significant difference in abrasion rate according to application order in the combined groups(p > 0.05). 4. The abrasion rate was significantly lower in all experimental groups than control group(p < 0.001). The results suggest that combined treatment of Nd:YAG laser irradiation and NaF iontophoresis on exposed root surface after periodontal therapy can enhance the abrasion-resistance of root surface and may inhibit the root caries development.

  • PDF

Precalcification Treatment of $TiO_2$ Nanotube on Ti-6Al-4V Alloy (Ti-6Al-4V 합금 표면에 생성된 $TiO_2$ 나노튜브의 전석회화 처리)

  • Kim, Si-Jung;Park, Ji-Man;Bae, Tae-Sung;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • Statement of problem: Recently precalcification treatment has been studied to shorten the period of the implant. Purpose: This study was performed to evaluate the effect of precalcification treatment of $TiO_2$ Nanotube formed on Ti-6Al-4V Alloy. Material and methods: Specimens of $20{\times}10{\times}2\;mm$ in dimensions were polished sequentially from #220 to #1000 SiC paper, ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. The nanotubular layer was processed by electrochemical anodic oxidation in electrolytes containing 0.5 M $Na_2SO_4$ and 1.0 wt% NaF. Anodization was carried out using a regulated DC power supply (Kwangduck FA, Korea) at a potential of 20 V and current density of $30\;㎃/cm_2$ for 2 hours. Specimens were heat-treated at $600^{\circ}C$ for 2 hours to crystallize the amorphous $TiO_2$ nanotubes, and precalcified by soaking in $Na_2HPO_4$ solution for 24 hours and then in saturated $Ca(OH)_2$ solution for 5 hours. To evaluate the bioactivity of the precalcified $TiO_2$ nanotube layer, hydroxyapatite formation was investigated in a Hanks' balanced salts solution with pH 7.4 at $36.5^{\circ}C$ for 2 weeks. Results: Vertically oriented amorphous $TiO_2$ nanotubes of diameters 48.0 - 65.0 ㎚ were fabricated by anodizing treatment at 20 V for 2 hours in an 0.5 M $Na_2SO_4$ and 1.0 NaF solution. $TiO_2$ nanotubes were composed with strong anatase peak with presence of rutile peak after heat treatment at $600^{\circ}C$. The surface reactivity of $TiO_2$ nanotubes in SBF solution was enhanced by precalcification treatment in 0.5 M $Na_2HPO_4$ solution for 24 hours and then in saturated $Ca(OH)_2$ solution for 5 hours. The immersion in Hank's solution for 2 weeks showed that the intensity of $TiO_2$ rutile peak increased but the surface reactivity decreased by heat treatment at $600^{\circ}C$. Conclusion: This study shows that the precalcified treatment of $TiO_2$ Nanotube formed on Ti-6Al-4V Alloy enhances the surface reactivity.

Effects of the root conditioning treatments after Nd:YAG laser irradiation on in vitro human gingival fibroblast attachment to root surfaces (Nd:YAG 레이저조사 후 치근의 처치방법들이 치근면 치은섬유아세포부착에 미치는 영향에 관한 연구)

  • Moon, Hye-Seong;Lim, Kee-Jung;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.701-713
    • /
    • 1996
  • The purpose of this study was to evaluate the biocompatibility of the Nd:YAG lased root surface followed by root planing and/or tetracyline-HCI(T.C.-HCI) conditioning. $30,4mm{\times}4mm$ root segments were obtained from unerupted third molars and 21, periodontally involved root segments. The treatment groups were as follows : (1) healthy root cementum surface groups : 1) control(non-treated group), 2) lased only, 3) lased/root planed, and 4) lased/T.C.-HCI. (2) diseased root cementum surface groups : 1) control(root planed only), 2) lased/root planed, and 3) lased/root planed/T.C.-HCI. The specimens were treated with a Nd:YAG laser using a $320{\mu}m$ noncontact optic fiber handpiece with an energy setting of 1.5W($114.6J/cm^2$), 2.0W($152.9J/cm^2$), 5.0W($382J/cm^2$) for one minute. The fiber was held perpendicular to the petri dish(NUNC) 2cm apart in an attempt to expose the entire root segments equally. Human gingival fibroblasts were cultured from explants of normal interdental gingival tissue obtained during third morlar extraction. The attachment assay was performed with third-generation fibroblasts. The numbers of gingival fibroblasts attached to the root surface were counted on each specimen under the light microscope, and were statistically analyzed by the oneway ANOVA followed by Tukey's test in SPSS/PC+programs. The results were as follows : 1) In healthy root cementum surfaces, lased/root planed groups exhibited a significantly increased fibroblast attachment compared to controls, lased only, and lased/T.C.-HCI groups(p<0.05), 2) In diseased root cementum surfaces, laser treatment followed by root planing and/or T.C.HCl groups exhibited a increased tendency of fibroblast attachment compared to root planed only group. The results suggest that laser treatment followed by root planing and/or T.C.-HCl would appear necessary so as to render the root surface biocompatible.

  • PDF

IMPROVEMENT EFFECTS OF ELECTROCHEMICAL STABILITY OF MAGNETIC MATERIALS FOR PROSTHETIC DENTISTRY (치과보철용 자석재료의 전기화학적 안정성 개선효과)

  • Kwack, Jong-Ha;Oh, Sang-Ho;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.628-641
    • /
    • 2006
  • Statement of problem: Dental magnetic materials have been applied to removable prosthetic appliances, maxillofacial prostheses, obturator and dental implant but they still have some problems such as low corrosion resistance in oral environments. Purpose: To increase the corrosion resistance of dental magnetic materials, surfaces of Sm-Co and Nd-Fe-B based magnetic materials were plated with TiN and sealed with stainless steels. Materials and methods : Surfaces of Sm-Co and Nd-Fe-B based magnetic materials were plated with TiN and sealed with stainless steels, and then three kinds of electrochemical corrosion test were performed in 0.9% NaCl solution; potentiodynamic, potentiostatic, and electrochemical impedance test. From this study, corrosion behavior, amount of elements released, mean average surface roughness values, the changing of retention force, and magnetic force values were measured comparing with control group of non-coated magnetic materials. Results: The values of surface roughness of TiN coated Sm-Co and TiN coated Nd-Fe-B based magnetic materials were lower than those of non coated Sm-Co and Nd-Fe-B alloy. From results of potentiodynamic test, the passive current density of TiN coated Sm-Co alloy were smaller than those of TiN coated Nd-Fe-B alloy and non coated alloys in 0.9% NaCl solution. From results of potentiostatic and electrochemical impedance test, the surface stability of the TiN coated Sm-Co alloy was more drastically increased than that of the TiN coated Nd-Fe-B alloy and non-coated alloy. The retention and magnetic force after and before corrosion test did not change in the case of TiN coated magnetic alloy sealed with stainless steel. Conclusion: It is considered that the corrosion problem and improvement for surface stability of dental magnetic materials could be solved by ion plating with TiN on the surface of dental magnetic materials and by sealing with stainless steels.

EFFECTS OF BONE MORPHOGENETIC PROTEIN ON THE HEALING OF PERIODONTIUM AFTER TOOTH REPLANTATION OF THE RAT (치아재식시 골형태형성단백이 치주조직 치유에 미치는 영향)

  • Kim, Ji-Sook;Park, Joon-Bong;Lee, Man-Sup;Kwon, Young-Hyuk;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.501-521
    • /
    • 2002
  • The purpose of this study is to evaluate the influences of the bone morphogenetic protein (BMP) on the healing of periodontal ligament and alveolar bone after replantation of tooth, and to examine the possibility of its clinical application. 45 Sprague Dawley rats weighted about 100 gram were divided into 3 experimental groups by different dose of BMP. All the upper right and left 1st molar were extracted after 5 days feeding of 0.4% ${\beta}$-aminopropionitrile, and right molar were used as experimental group and left molar were used as control group. The root surface of experimental molar were treated with 25,50 and l00ng/ml of human recombinant Bone morphogenetic protein-4 (rh-BMP-4) with micropipet, and 1M Sodium hypochloride were used on control root surface. All the experimental animals were sacrificed as 1, 2, 4, 7 and 14 days after autoreplantation of upper 1st molar into their own position. The maxilla were disected included both side of 1st molar. The collected tissue were processed from demineralization to paraffin embeding as usual procedure, and the specimens were prepared with Hematoxylin-Eosin stain for the light microscopic evaluation. The results of this study were as follows : 1. There was no significant differences between control and experimental site on 1 and 2 days after replantation of tooth. In the case of 4th days, the evidence of tissue regeneration were observed on experimental site to compare the controls. New osteoid were revealed on high concentration of BMP at 7 days after replantation, and it became more obvious at 14 days, 2. The effect of the rh-BMP-4 coated on root surface was revealed slight influences for the prolifertion of cells of periodontium and tissue regeneration as dose-dependent pattern. 3. Bony ankylosis was observed between alveolar bone and root surface due to the remarkable amount of osteoid formation on the 14 days after replantation of root. In the conclusion, it was suggested that topical application of the rhBMP-4 on the root surface has influence on the periodontal ligament and alveolar bone. The application method of BMP on the root should be designed with calculation of proper concentration.

Effect of tetracycline-HCl root conditioning on gingival epithelial cell attachment to root surface (염산테트라싸이클린으로 처리한 치근면의 치은상피세포부착에 관한 연구)

  • Hwang, Na-Young;Park, Byung-Ki;Kim, Sang-Mok;Kuk, Jung-Ki;Park, Ju-Chul;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The ultimate goal of periodontal therapy is directed to arresting the progression of the disease, and regenerating the fibrous attachment. In order to achieve such treatment aim, the plaque and calculus must be eliminated and the physiological conditions of the root surface must be changed to facilitate the attachment and migration of the new fibroblasts, The method of changing the proper root surface conditions to promote the healing of periodontal tissue involves mechanical procedures, such as scaling and root planing, and chemical procedures such as tetracycline-HCl. However, the formation of a long junctional epithelium was most frequently observed type of healing. Thus, the aim of this study was to examine in vitro the influence of surface conditioning of dentin by TC-HCl on human gingival epithelial cell attachment. Human gingival epithelial cells were obtained from healthy retromolar pad area(under the age 23 years). Seventy two teeth extracted from severe periodontitis were used as study material. To evaluate the epithelial cell attachment to dentin, the prepared specimen was divided to four groups. For the control group, only scaling and root planing were carried out, and for the test group, 1 to 3, the concentration of the TC-HCl was 50, 125 and 250mg/ml respectively. After cell cultivation time of 1-, 3-. 24 hour, for the indirect quantitative assessment of gingival epithelial cell attached to dentin sample, the absorbance of epithelial cell unattached to dentin was measured. The results were as follows; 1. There was no statistically significant difference between scaling and root planing group and TC-HCl 50mg/ml 125mg/ml and 250mg/ml group about absorbance of unattached epithelial cell to dentin sample(p>0.5). 2. As time passes, the absorbance of unattached gingival epithelial cell to dentin sample was decreased statistically significant(p<0.05). 3. There was no statistically significant difference among the TC-HCl group(p>0.05) We concluded that there was similar effect on gingival epithelial cell attachment between TC-HCl conditioning on root surface and only scaling and root planing treatment

Effect of Root Surface Treatment Using EDTA on the Initial Attachment of Human Gingival Fibroblasts (EDTA를 이용한 치근면 처리가 치은섬유모세포의 초기 부착에 미치는 영향)

  • Kim, Seong-Bong;Lim, Ki-Jung;Kim, Sang-Mok;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.145-157
    • /
    • 2000
  • Cytotoxic substances in dental calculus and root cementum of periodontally diseased teeth inhibit new attachment and regeneration. The purpose of scaling and root planing is to remove pathologic structures harboring these cytotoxic substances in order to create a biologically acceptable root surface. However, these procedures inevitably leave a non-biocompatible smear layer. Conventionally, the smear layer has been removed with low pH etching agents such as citric acid, phosphoric acid and tetracycline hydrochloride(TC). Lately, a supersaturated neutral pH etching solution of ethylene diamine tetraacetic acid(EDTA) has been found to be as effective as low pH etchants with respect to smear removal and to be superior in exposing root surfaceassociated collagen. The aim of the present study was to determine the effect of root surface treatment using EDTA on the initial attachment of human gingival fibroblasts. 27 human teeth, extracted due to severe periodontitis, were cut into dentin slices after root planing. The specimens were divided into TC group(treated with $50㎎/m{\ell}$ tetracycline-HCl, pH 1.52), EDTA group(treated with 17% EDTA, pH 7.4), and non-treated control group. After sterilization, 5th subcultured human gingival fibroblasts were seeded in each culture well containing a prepared root slice and incubated for 15 min., 60 min., and 4 hours in 5% $CO_2$ incubator at $37^{\circ}C$. At each incubation time, the number of attached fibroblasts were counted on the microphotographs taken at a magnification of x100. The difference of the number of attached cells between groups was statistically analyzed by the ANOVA followed by Duncan test in SPSS/PC+programs. The results were as follows : 1. After incubation for 15 min, the attached cells were significantly more in EDTA group and TC group than non-treated control group(p<0.05), but there was no significance in the difference between EDTA group and TC group(p>0.1). 2. After incubation for 60 min and 4 hours, there was no significant difference in the number of attached cells between all groups(p>0.1). 3. In both EDTA group and TC group, there was no significant difference in the number of attached cells between different incubation(p>0.1). But in control group, the number of attached cells was significantly increased after incubation for 60 min, compared with incubation for 15 min(p<0.05). The above results suggest that root surface treatment using EDTA could enhance the initial attachment of gingival fibroblasts to root surface as effective as tetracycline-HCl.

  • PDF