• Title/Summary/Keyword: implant surface

Search Result 969, Processing Time 0.028 seconds

The Effects of Citric Acid on HA coated Implant Surface (구연산 HA임플란트 표면구조에 미치는 영향)

  • Kim, Joong-Cheon;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk;Shin, Seung-II
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.575-584
    • /
    • 2007
  • The present study was performed to evaluate the effect of citric acid on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, and HA coated surface were utilized. Pure titanium machined surface and HA coated surface were rubbed with pH 1 citric acid for 30s., 45s., 60s., 90s., and 120s. respectively. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. The specimens showed a few shallow grooves and ridges in pure titanium machined surface implants. The roughness of surfaces conditioned with pH 1 citric acid was slightly increased. 2. In HA-coated surfaces, round particles were deposited irregularly. The specimens were not significant differences within 45s. But, began to be changed from 60s. The roughness of surfaces was lessened and the surface dissolution was increased relative to the application time. In conclusion, pure titanium machined surface implants and HA coated surface implants can be treated with pH 1 citric acid for peri-implantitis treatment if the detoxification of these surfaces could be evaluated.

A Retrospective Clinical Study of Survival Rate for a Single Implant in Posterior Teeth (구치부 단일 임플란트의 생존율에 대한 후향적 연구)

  • Han, Sung-Il;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.3
    • /
    • pp.186-199
    • /
    • 2012
  • Purpose: Single implants, of which screw loosening has been observed frequently, presents problems such as fixtures fractures, marginal bone loss, and inflammation of the soft tissue around the implant. However, the single implant is more conservative, cost effective, and predictable compared to the 3 unit bridge with respect to the long-term outcome. This study evaluated the survival rate as well as future methods aimed at increasing the survival rate in single implants in posterior teeth. Methods: Among the implants placed in the Dankook University Dental Hospital department of Oral & Maxillofacial surgery from January 2001 to June 2008, 599 implants placed in the maxillar and mandibular posterior were evaluated retrospectively. Survival rates were investigated according to implant location, cause of tooth loss, gender, age, general disease, fixture diameter and length, surface texture, implant type and shape, presence of bone graft, surgery stage, surgeons, bone quality and opposite teeth. Results: Out of 599 single implants in posterior teeth, 580 implants survived and the survival rate was 96.8%. The difference in survival rate was statistically significant according to the implant location. The survival rate was low (84.2%) in implants exhibiting a wide diameter (${\geq}5.1mm$) and the surface treated by the acid etching group demonstrated a significantly lower survival rate (91.1%). One stage surgical procedure, which implemented a relatively better bone quality survival rate (100%), was higher than the two stage surgical procedure (96.1%). The survival rate of type IV bone quality (75%) was significantly lower than the other bone quality. Conclusion: Single posterior teeth implant treatments should use an improved surface finishing fixture as well as careful and safe procedures when performing implant surgery in the maxilla premolar and molar regions since bone quality is poor.

A retrospective study on related factors affecting the survival rate of dental implants

  • Jang, Hee-Won;Kang, Jeong-Kyung;Lee, Ki;Lee, Yong-Sang;Park, Pil-Kyoo
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.4
    • /
    • pp.204-215
    • /
    • 2011
  • PURPOSE. The aim of this retrospective study is to analyze the relationship between local factors and survival rate of dental implant which had been installed and restored in Seoul Veterans Hospital dental center for past 10 years. And when the relationship is found out, it could be helpful to predict the prognosis of dental implants. MATERIALS AND METHODS. A retrospective study of patients receiving root-shaped screw-type dental implants placed from January 2000 to December 2009 was conducted. 6385 implants were placed in 3755 patients. The following data were collected from the dental records and radiographs: patient's age, gender, implant type and surface, length, diameter, location of implant placement, bone quality, prosthesis type. The correlations between these data and survival rate were analyzed. Statistical analysis was performed with the use of Kaplan-Meier analysis, Chi-square test and odds ratio. RESULTS. In all, 6385 implants were placed in 3755 patients (3120 male, 635 female; mean age $65{\pm}10.58$ years). 108 implants failed and the cumulative survival rate was 96.33%. There were significant differences in age, implant type and surface, length, location and prosthesis type (P<.05). No significant differences were found in relation to the following factors: gender, diameter and bone quality (P>.05). CONCLUSION. Related factors such as age, implant type, length, location and prosthesis type had a significant effect on the implant survival.

Electrochemical Characteristics of Dental Implant in the Various Simulated Body Fluid and Artificial Saliva (다양한 유사체액과 인공타액에서 치과용 임플란트의 전기화학적 특성)

  • Kim, T.H.;Park, G.H.;Son, M.K.;Kim, W.G.;Jang, S.H.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.226-231
    • /
    • 2008
  • Titanium and its alloy have been widely used in dental implant and orthopedic prostheses. Electrochemical characteristics of dental implant in the various simulated body fluids have been researched by using electrochemical methods. Ti-6Al-4V alloy implant was used for corrosion test in 0.9% NaCl, artificial saliva and simulated body fluids. The surface morphology was observed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The electrochemical stability was investigated using potentiosat (EG&G Co, 263A). The corrosion surface was observed using scanning electron microscopy (SEM). From the results of potentiodynamic test in various solution, the current density of implant tested in SBF and AS solution was lower than that of implant tested in 0.9% NaCl solution. From the results of passive film stability test, the variation of current density at constant 250 mV showed the consistent with time in the case of implant tested in SBF and AS solution, whereas, the current density at constant 250mV in the case of implant tested in 0.9% NaCl solution showed higher compared to SBF and AS solution as time increased. From the results of cyclic potentiodynamic test, the pitting potential and |$E_{pit}\;-\;E_{corr}$| of implant tested in SBF and AS solution were higher than those of implant tested in 0.9% NaCl solution.

Biomechanical evaluation of dental implants with different surfaces: Removal torque and resonance frequency analysis in rabbits

  • Koh, Jung-Woo;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2009
  • STATEMENT OF PROBLEM. Macroscopic and especially microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Dental implants with modified surfaces have shown stronger osseointegration than implants which are only turned (machined). Advanced surface modification techniques such as anodic oxidation and Ca-P application have been developed to achieve faster and stronger bonding between the host bone and the implant. PURPOSE. The purpose of this study was to investigate the effect of surface treatment of titanium dental implant on implant stability after insertion using the rabbit tibia model. MATERIAL AND METHODS. Three test groups were prepared: sandblasted, large-grit and acid-etched (SLA) implants, anodic oxidized implants, and anodized implants with Ca-P immersion. The turned implants served as control. Twenty rabbits received 80 implants in the tibia. Resonance frequencies were measured at the time of implant insertion, 2 weeks and 4 weeks of healing. Removal torque values (RTV) were measured 2 and 4 weeks after insertion. RESULTS. The implant stability quotient (ISQ) values of implants for resonance frequency analysis (RFA) increased significantly (P <. 05) during 2 weeks of healing period although there were no significant differences among the test and control groups (P >. 05). The test and control implants also showed significantly higher ISQ values during 4 weeks of healing period (P < .05). No significant differences, however, were found among all the groups. All the groups showed no significant differences in ISQ values between 2 and 4 weeks after implant insertion (P >. 05). The SLA, anodized and Ca-P immersed implants showed higher RTVs at 2 and 4 weeks of healing than the machined one (P < .05). However, there was no significant difference among the experimental groups. CONCLUSION. The surface-modified implants appear to provide superior implant stability to the turned one. Under the limitation of this study, however, we suggest that neither anodic oxidation nor Ca-P immersion techniques have any advantage over the conventional SLA technique with respect to implant stability.

DNA microarray analysis of gene expression of MC3T3-E1 osteoblast cell cultured on anodized- or machined titanium surface

  • Park, Ju-Mi;Jeon, Hye-Ran;Pang, Eun-Kyoung;Kim, Myung-Rae;Kang, Na-Ra
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.299-308
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate adhesion and gene expression of the MC3T3-E1 cells cultured on machined titanium surface (MS) and anodized titanium surface (AS) using MTT test, Scanning electron micrograph and cDNA microarray. Materials and Methods: The MTT test assay was used for examining the proliferation of MC3T3-E1 cells, osteoblast like cells from Rat calvaria, on MS and AS for 24 hours and 48 hours. Cell cultures were incubated for 24 hours to evaluate the influence of the substrate geometry on both surfaces using a Scanning Electron Micrograph (SEM). The cDNA microarray Agilent Rat 22K chip was used to monitor expressions of genes. Results: After 24 hours of adhesion, the cell density on AS was higher than MS (p < 0.05). After 48 hours the cell density on both titanium surfaces were similar (p > 0.05). AS had the irregular, rough and porous surface texture. After 48 hours incubation of the MC3T3-E1 cells, connective tissue growth factor (CTGF) was up-regulated on AS than MS (more than 2 fold) and the insulin-like growth factor 1 receptor was down-regulated (more than 2 fold) on AS than MS. Conclusion: Microarray assay at 48 hours after culturing the cells on both surfaces revealed that osteoinductive molecules appeared more prominent on AS, whereas the adhesion molecules on the biomaterial were higher on MS than AS, which will affect the phenotype of the plated cells depending on the surface morphology.

Accuracy of digital and conventional dental implant impressions for fixed partial dentures: A comparative clinical study

  • Gedrimiene, Agne;Adaskevicius, Rimas;Rutkunas, Vygandas
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.5
    • /
    • pp.271-279
    • /
    • 2019
  • PURPOSE. The newest technologies for digital implant impression (DII) taking are developing rapidly and showing acceptable clinical results. However, scientific literature is lacking data from clinical studies about the accuracy of DII. The aim of this study was to compare digital and conventional dental implant impressions (CII) in a clinical environment. MATERIALS AND METHODS. Twenty-four fixed zirconia restorations supported by 2 implants were fabricated using conventional open-tray impression technique with splinted transfers (CII group) and scan with Trios 3 IOS (3Shape) (DII group). After multiple verification procedures, master models were scanned using laboratory scanner D800 (3Shape). 3D models from conventional and digital workflow were imported to reverse engineering software and superimposed with high resolution 3D CAD models of scan bodies. Distance between center points, angulation, rotation, vertical shift, and surface mismatch of the scan bodies were measured and compared between conventional and digital impressions. RESULTS. Statistically significant differences were found for: a) inter-implant distance, b) rotation, c) vertical shift, and d) surface mismatch differences, comparing DII and CII groups for mesial and distal implant scan bodies ($P{\leq}.05$). CONCLUSION. Recorded linear differences between digital and conventional impressions were of limited clinical significance with two implant-supported restorations.

Finite element analysis of stress distribution on supporting bone of posterior implant partial dentures by loading location (유한요소 분석을 이용한 하중 위치에 따른 구치부 임플란트 국소의치 지지골의 응력 분포 연구)

  • Son, Sung-Sik;Kim, Young-Jick;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.93-101
    • /
    • 2007
  • The purpose of this study is to evaluate the effect of three different oblique mechanical loading to occlusal surfaces of posterior implant partial dentures on the stress distributions in surrounding bone, using 3-dimensional finite element method. A 3-dimensional finite element model of a posterior implant partial dentures composed of three unit implants, simplified 3 gold alloy crown and supporting bone was developed according to the design of AVANA self tapping implant for this study. Three kinds of surface distributed oblique loads(300 N) are applied to following occlusal surfaces in the three crowns; 1) All occlusal surfaces in the three crown(load of 300 N was shared to three crown), 2) Occlusal surface of centered crown (load of 300 N was applied to a centered crown), 3) Occlusal surface of proximal crown(load of 300 N was applied to a distal proximal crown). In the results, 141 MPa of maximum von Mises stress was calculated at third loading condition and 98 MPa of minimum von Mises stress was calculated at first loading condition. From the results, location and type of occlusive loading conditions are important for the safety of supporting bone.

  • PDF

The influence of tetracycline-HCI for micromorphology of Thermal dual acid etched surface implants (염산 테트라싸이클린이 이중 산부식 임플란트 표면 구조에 미치는 영향)

  • Jeong, Do-Min;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.2
    • /
    • pp.265-275
    • /
    • 2007
  • The present study was performed to evaluate the effect of Tetracycline-HCI on the change of implant surface microstructure according to application time. Implants with thermal dual acid etched surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ Tetracycline-HCI solution and sterilized saline for O.5min, 1min, 1.5min, 2min, 2.5min and 3min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation and measured surface roughness by optical interferometer. The results of this study were as follows. 1. The thermal dual acid etched surfaces showed many small peaks and valleys distributed overall surface. 2. The surface conditioning with Tetracycline-HCI and saline didn't influence on its micromorphology. In conclusion, the implant with thermal dual acid etched surface has a protective micromorphology from the detoxification with $50mg/m{\ell}$ Tetracycline-HCI and a scrubbing with cotton pellet. Therefore, the detoxification with $50mg/m{\ell}$ Tetracycline-HCI is an effective method for peri-implantitis in case implants with thermal dual acid etched surface.