• Title/Summary/Keyword: implant size

Search Result 293, Processing Time 0.025 seconds

Assessment of demographic and clinical data related to dental implants in a group of Turkish patients treated at a university clinic

  • Bural, Canan;Bilhan, Hakan;Cilingir, Altug;Geckili, Onur
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.351-358
    • /
    • 2013
  • PURPOSE. This retrospective study analyzed the distribution of the dental implants with regards to age and gender of the patients and type of indication for the implant therapy, as well as the location, dimension and type of the implants. MATERIALS AND METHODS. The data of demographics (age and gender), type of indication for implant therapy, anatomical location, dimensions (length and diameter) and type (bone and tissue level) of 1616 implants were recorded from patient charts between January 2000 and January 2010. Descriptive statistics were analyzed using a chi-squared test for demographic parameters, type of indication, tooth position, anatomical location, implant dimensions and type (${\alpha}$=.05). RESULTS. The patient pool comprised of 350 women and 266 men, with a mean age of $52.12{\pm}13.79$ years. The difference in n% of the implants of the age groups was statistically significant between the types of indications. The difference in the position of the implants was statistically significant between the n% of the implants of all age groups. Gender did not significantly vary, except that the diameter of the implants was significantly higher for the standard diameter implants in males. The difference between the implant positions was statistically significant when considered according to indication. The relationship between implant length and anatomical location was statistically significant. CONCLUSION. The indication for dental implant use is age dependent and the type and size of the implant seems to be strongly related to the location of the implant.

Breast Reconstruction by Pectoralis Major Muscle Transfer with Implants after Skin Sparing Partial Mastectomy (피부보존 유방절제술 후 대흉근전위술과 유방삽입물을 이용한 유방재건술)

  • Park, Jung Min;Kwon, Yong Seok;Lee, Keun Cheol;Kim, Seok Kwun;Lee, Jin Hwa;Jho, Sae Heon
    • Archives of Plastic Surgery
    • /
    • v.32 no.5
    • /
    • pp.573-581
    • /
    • 2005
  • Breast cancer is the second leading cause of death in woman. Unfortunately, the frequency of breast cancer and mastectomy are increasing in Korea. This paper introduces the breast reconstruction by use of pectoralis major muscle transfer with breast implant for small size defect after skin sparing mastectomy for more satisfaction. We reviewed 24 consecutive patients who underwent breast reconstruction by pectoralis major muscle transfer with implant and only breast implant in Dong-A University from April 2002 to March 2004. The patient's age ranged between 29 and 54 years with mean of 42.3 years. We used pectorals major muscle transfer with breast implant in 12 patients and breast implant alone in 12 patients as control. The follow-up period of patients ranged from 10 months to 3 years with mean of 18.5 months. The points of comparison with control group reconstructed by breast implant alone were doctor and patient satisfaction score, operation time, duration of admission, amount of drainage, complication and satisfaction according to mass location. In conclusion, there is no difference with control group in the point of operation time, mount of drainage, duration of admission. And there is higher level of doctor's and patient's satisfaction in group reconstructed by pectoralis major muscle transfer with breast implant than implant only group. Especially, pectoralis major muscle transfer with breast implant was especially necessary for the defect in upper lateral quadrant of the breast to get more satisfaction. The advantage of pectoralis major muscle transfer with breast implant is prevention of the protruding and palpability of implant and aesthetically satisfactory result by intraoperative modification of breast shape.

The cumulative survival rate of sandblasted, large-grit, acid-etched dental implants: a retrospective analysis

  • Haeji Yum;Hee-seung Han;Kitae Kim;Sungtae Kim;Young-Dan Cho
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.2
    • /
    • pp.122-135
    • /
    • 2024
  • Purpose: This retrospective study aimed to assess the long-term cumulative survival rate of titanium, sandblasted, large-grit, acid-etched implants over a 10-year follow-up period and investigate the factors affecting the survival rate and change in marginal bone loss (MBL). Methods: The study included 400 patients who underwent dental implant placement at the Department of Periodontology of Seoul National University Dental Hospital (SNUDH) between 2005 and 2015. Panoramic radiographic images and dental records of patients were collected and examined using Kaplan-Meier analysis, Cox proportional hazards regression analysis, and multiple regression analysis to determine the survival rates and identify any factors related to implant failure and MBL. Results: A total of 782 implants were placed with a follow-up period ranging from 0 to 16 years (mean: 8.21±3.75 years). Overall, 25 implants were lost, resulting in a cumulative survival rate of 96.8%. Comparisons of the research variables regarding cumulative survival rate mostly yielded insignificant results. The mean mesial and distal MBLs were 1.85±2.31 mm and 1.59±2.03 mm, respectively. Factors influencing these values included age, diabetes mellitus (DM), jaw location, implant diameter, bone augmentation surgery, and prosthetic unit. Conclusions: This study found that the implant survival rates at SNUDH fell within the acceptable published criteria. The patients' sex, age, DM status, implant location, implant design, implant size, surgical type, bone augmentation, and prosthetic unit had no discernible influence on long-term implant survival. Sandblasted, large-grit, acid-etched implants might offer advantages in terms of implant longevity and consistent clinical outcomes.

Planning of Dental Implant Placement Using 3D Geometric Processing and Finite Element Analysis (3차원 기하 처리와 유한요소 분석을 이용한 치아 임플란트 식립 계획 수립)

  • Park, Hyung-Wook;Park, Chul-Woo;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.253-261
    • /
    • 2012
  • In order to make dental implant surgery successful, it is important to perform proper planning for dental implant placement. In this paper, we propose a decent approach to dental implant placement planning based on geometric processing of 3D models of jawbones, a nerve curve and neighboring teeth around a missing tooth. Basically, the minimum enclosing cylinders of the neighboring teeth around the missing tooth are properly used to determine the position and direction of the implant placement. The position is computed according to the radii of the cylinders and the center points of their top faces. The direction is computed by the weighted average of the axes of the cylinders. For a cylinder whose axis passes the position along the direction, its largest radius and longest length are estimated such that it does not interfere with the neighboring teeth and the nerve curve, and they are used to select the size and type of an implant fixture. From the geometric and spatial information of the jawbones, the teeth and the fixture, we can construct the 3D model of a surgical guide stent which is crucial to perform the drilling operation with ease and accuracy. We have shown the validity of the proposed approach by performing the finite element analysis of the influence of implant placement on bone stress distribution. Adopted in 3D simulation of dental implant placement, the approach can be used to provide dental students with good educational contents. It is also expected that, with further work, the approach can be used as a useful tool to plan for dental implant surgery.

Comparison of accuracy between free-hand and surgical guide implant placement among experienced and non-experienced dental implant practitioners: an in vitro study

  • Dler Raouf Hama;Bayad Jaza Mahmood
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.5
    • /
    • pp.388-401
    • /
    • 2023
  • Purpose: This study investigated the accuracy of free-hand implant surgery performed by an experienced operator compared to static guided implant surgery performed by an inexperienced operator on an anterior maxillary dental model arch. Methods: A maxillary dental model with missing teeth (No. 11, 22, and 23) was used for this in vitro study. An intraoral scan was performed on the model, with the resulting digital impression exported as a stereolithography file. Next, a cone-beam computed tomography (CBCT) scan was performed, with the resulting image exported as a Digital Imaging and Communications in Medicine file. Both files were imported into the RealGUIDE 5.0 dental implant planning software. Active Bio implants were selected to place into the model. A single stereolithographic 3-dimensional surgical guide was printed for all cases. Ten clinicians, divided into 2 groups, placed a total of 60 implants in 20 acrylic resin maxillary models. Due to the small sample size, the Mann-Whitney test was used to analyze mean values in the 2 groups. Statistical analyses were performed using SAS version 9.4. Results: The accuracy of implant placement using a surgical guide was significantly higher than that of free-hand implantation. The mean difference between the planned and actual implant positions at the apex was 0.68 mm for the experienced group using the free-hand technique and 0.14 mm for the non-experienced group using the surgical guide technique (P=0.019). At the top of the implant, the mean difference was 1.04 mm for the experienced group using the free-hand technique and 0.52 mm for the non-experienced group using the surgical guide technique (P=0.044). Conclusions: The data from this study will provide valuable insights for future studies, since in vitro studies should be conducted extensively in advance of retrospective or prospective studies to avoid burdening patients unnecessarily.

Design Optimization of Dental Implants Using Finite Element Analysis for Injecting Bioactive Materials

  • Lee, Kang-Soo;Lee, Yong-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.292-297
    • /
    • 2012
  • In order to improve osseointegration of dental implants with bone we studied an implant with holes inside its body to deliver bioactive materials based on a proposed patent. Bioactive materials can be selectively applied through holes to a patient according to diagnosis and the integration progress. After the bioactive material is applied, bone can grow into the holes to increase implant bonding and also enhance surface integration. In order to improve the concept and study the effect of bioactive material injection on implant integration, design optimization and integration research were undertaken utilizing the finite element method. A 2-dimensional simulation study showed that when bone grew into the holes after the bioactive material was injected, stress vertically distributed in the upper part of the implant was relieved and mild stress appeared at the opening of the injection holes. This confirmed the effect of the bioactive material and the contribution of the injection holes, but the maximum stress increased ten-fold at the opening. In order to reduce the maximum stress, the size, location, and the number of holes were varied and the effects were studied. When bioactive materials formed an interface layer between the implant and the mandible and four holes were filled with cortical and cancellous bones all the stress concentrated opposite to the loading side without holes disappeared. The stresses at the four outlets of the holes was mildly elevated but the maximum stress value was ten-fold greater compared to the case without the bioactive material.

Three Dimensional Finite Element Analysis of Kimplant (Kimplant에 관한 3차원 유한요소 분석적 연구)

  • Kim, Woo-Uoung;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.1
    • /
    • pp.9-17
    • /
    • 2004
  • In this study, the biomechanical characteristics of Kimplant were compared with that of Branemark implant by using three dimensional finite element analysis. Two finite element models were fabricated by inserting each implant into the bone model. The bone model was designed to have 18mm height, 13mm width and 15mm length. The size of each implant was planned to have 4mm width and 10mm length. A 200N force was applied on the center of abutment top in three directions - vertical, horizontal and oblique. After analyzing the stresses of fixture and surrounding bone, following results were obtained. 1. There was similar stress distribution between the two models. 2. The magnitude of maximum principal stress on the implant was similar between the two models but the location of maximum principal stress on the implant was different. 3. The magnitude and location of maximum principal stress on the surrounding bone was similar between the two models.

TWO PART MINI-IMPLANT AS AN EFFICIENT TOOL FOR INTERMAXILLARY FIXATION (분리형 미니 임플란트를 이용한 효과적인 악간고정법의 소개)

  • Lee, Won;Kim, In-Soo;Seo, Woon-Kyung;Heo, Hyun-A;Kim, Seong-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.477-482
    • /
    • 2006
  • The new type of orthodontic mini-implant named C-implant can be an effective alternative to conventional one-component mini-implant in the intermaxillary fixation (IMF) cases because of its particular design. The small size, two-part design, efficiency, and low cost of the C-implant make it applicable to various types of IMF cases easily such as fracture reduction and orthognathic surgery. The two part design resists highly to the fracture or deformation during implantation and removal. The long span head allows the patient to easily attach intermaxillary elastics, so that the patient can apply intermaxillary elastics for traction easily. Through this article, we tried to show the possibility of this appliance as a good adjunct for the IMF screw.

Processing Method for the Laser Surface Treatment of Dental Implants (치과용 임플란트의 레이저 표면처리 공정기술 개발)

  • Yoo, Young-Tae;Choi, Byeong-Jae;Kim, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.100-106
    • /
    • 2021
  • Typical implants are not specified the screw structure and the surface process according to the bone quality of the human body. The purpose of this study is to complement the shortcomings of the existing implant surface processing method. It is to propose a surface processing method that increases the adhesion between the implant and bone tissue by increasing the surface area per unit area of the implant. It is very important to establish precise and systematic process parameters when surface treatment of implants using lasers. Therefore, we intend to develop a process so that the implant can be a biocompatible structure using a Q-switching Nd:YAG laser with a wavelength of 1.06um. Implant surface treatment technology through this study will be used in the industry.

Three Dimensional Optimum Design of Endosseous Implant in Dentistry by Multilevel Response Surface Optimization (다단계 반응표면법을 이용한 치과용 임플란트의 3차원 형상최적설계)

  • Han, Jung-Suk;Kim, Jong-Soo;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.940-947
    • /
    • 2004
  • In this paper, an optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen for design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size for each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem.