• Title/Summary/Keyword: implant prosthesis

Search Result 639, Processing Time 0.027 seconds

Considerations for minimizing food impaction after implant prosthesis: Adjacent and antagonistic teeth (임플란트 보철 후의 식편압입을 최소화하기 위한 고려사항: 인접치와 대합치)

  • Lee-Ra, Cho
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.47-55
    • /
    • 2022
  • Food impaction due to proximal space opening after implant restoration is a very common phenomenon in patients who have implant prosthesis. This occurs because the movement mechanism between the implant and the tooth is different, and it occurs about 30-60% over time. Contributing factors include the arch (mandible), region (posterior teeth), adjacent teeth (non-vital teeth), and antagonist teeth (natural teeth or implants), etc. While this phenomenon cannot be prevented, efforts should be made to minimize it. In order to have an ideal proximal contact as much as possible, the concave shape or the prominent lower proximal shape should be modified to create a symmetrical proximal shape. with the buccal dentate in the upper third height should be adjusted. Other conditions should be modified so that the heights of the marginal ridges are similar. Since an irregular occlusal plane is a cause of poor prognosis, food impaction should be minimized by restoring the ideal occlusal plane by correcting the extruded antagonist and reduction of the disto-buccal cusp.

A case of oral rehabilitation in a patient with severe tooth wear and occlusal plane collapse, utilizing maxillary fixed prosthesis and mandibular implant-assisted removable partial denture (과도한 치아 마모와 교합평면 붕괴를 보이는 환자에서 상악 고정성 보철 및 하악 임플란트 보조 국소의치를 통한 구강회복 증례)

  • Jae-Hyung Ahn;Sung-Yong Kim;Seong-A Kim;Yong-Sang Lee;Keun-Woo Lee;Hee-Won Jang
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.174-182
    • /
    • 2024
  • In patients with multiple missing molars, wear patterns or displacement of anterior teeth, collapsed occlusal plane, and reduction in vertical dimension may occur. Particularly, in case of a few remaining teeth on one side, a removable partial denture has biomechanical disadvantage. For this reason, an implant-assisted removable partial denture with a few implant surveyed crowns can be an alternative. In this case, due to the right mandibular posterior teeth loss, the anterior teeth were severely worn and the occlusal plane was collapsed. With minimal increasing vertical dimension, oral rehabilitation was performed using a maxillary fixed prosthesis and mandibular implant-assisted removable partial denture. As a result, functional and aesthetic clinical outcomes were obtained.

EFFECT OF ANCHORAGE SYSTEMS ON LOAD TRANSFER WITH MANDIBULAR IMPLANT OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS (하악 임플란트 overdenture에서 anchorage system이 하중전달에 미치는 영향)

  • Kim Jin-Yeol;Jeon Young-Chan;Jeong Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.507-524
    • /
    • 2002
  • Load transfer of implant overdenture varies depending on anchorage systems that are the design of the superstructure and substructure and the choice of attachment. Overload by using improper anchorage system not only will cause fracture of the framework or screw but also may cause failure of osseointegration. Choosing anchorage system in making prosthesis, therefore, can be considered to be one of the most important factors that affect long-term success of implant treatment. In this study, in order to determine the effect of anchorage systems on load transfer in mandibular implant overdenture in which 4 implants were placed in the interforaminal region, patterns of stress distribution in implant supporting bone in case of unilateral vertical loading on mandibular left first molar were compared each other according to various types of anchorage system using three-dimensional photoelastic stress analysis. The five photoelastic overdenture models utilizing Hader bar without cantilever using clips(type 1), cantilevered Hader bar using clips(type 2), cantilevered Hader bar with milled surface using clips(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4), and Hader bar using clip and ERA attachments(type 5), and one cantilevered fixed-detachable prosthesis(type 6) model as control were fabricated. The following conclusions were drawn within the limitations of this study, 1. In all experimental models. the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. Maximum fringe orders on ipsilateral distal implant supporting bone in a ascending order is as follows: type 5, type 1, type 4, type 2 and type 3, and type 6. 3. Regardless of anchorage systems. more or less stresses were generated on the residual ridge under distal extension base of all overdenture models. To summarize the above mentioned results, in case of the patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant and unfavorable antero-posterior spread. selecting resilient type attachment or minimizing distal cantilever bar is considered to be appropriate methods to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.

Early implant failure: a retrospective analysis of contributing factors

  • Kang, Dae-Young;Kim, Myeongjin;Lee, Sung-Jo;Cho, In-Woo;Shin, Hyun-Seung;Caballe-Serrano, Jordi;Park, Jung-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.287-298
    • /
    • 2019
  • Purpose: The aim of this retrospective study was to determine the prevalence of early implant failure using a single implant system and to identify the factors contributing to early implant failure. Methods: Patients who received implant treatment with a single implant system ($Luna^{(R)}$, Shinhung, Seoul, Korea) at Dankook University Dental Hospital from 2015 to 2017 were enrolled. The following data were collected for analysis: sex and age of the patient, seniority of the surgeon, diameter and length of the implant, position in the dental arch, access approach for sinus-floor elevation, and type of guided bone regeneration (GBR) procedure. The effect of each predictor was evaluated using the crude hazard ratio and the adjusted hazard ratio (aHR) in univariate and multivariate Cox regression analyses, respectively. Results: This study analyzed 1,031 implants in 409 patients, who comprised 169 females and 240 males with a median age of 54 years (interquartile range [IQR], 47-61 years) and were followed up for a median of 7.2 months (IQR, 5.6-9.9 months) after implant placement. Thirty-five implants were removed prior to final prosthesis delivery, and the cumulative survival rate in the early phase at the implant level was 95.6%. Multivariate regression analysis revealed that seniority of the surgeon (residents: aHR=2.86; 95% confidence interval [CI], 1.37-5.94) and the jaw in which the implant was placed (mandible: aHR=2.31; 95% CI, 1.12-4.76) exerted statistically significant effects on early implant failure after adjusting for sex, age, dimensions of the implant, and type of GBR procedure (preoperative and/or simultaneous) (P<0.05). Conclusions: Prospective studies are warranted to further elucidate the factors contributing to early implant failure. In the meantime, surgeons should receive appropriate training and carefully select the bone bed in order to minimize the risk of early implant failure.

Effect of internal gap on retentivity in implant fixed prosthesis with lingual slot (설측 슬롯을 부여한 임플란트 고정성 보철물에서 내면 간격이 유지력에 미치는 영향)

  • Kim, Tae-Kyun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.206-211
    • /
    • 2018
  • Purpose: Recently, a method of forming a slot in the prosthesis lingual has been introduced to solve the occlusal and aesthetic disadvantages of screw-retained prosthesis in the manufacture of implant-fixed prosthesis and to ensure retrievability in cement retained prostheses. The purpose of this study is to investigate the effect of the internal gap on the removal of the prosthesis in the preparation of cement-retained implant prostheses with lingual slots. Materials and methods: Titanium abutment and internal gap of the zirconia prosthesis to be attached to the upper part were set to 30, 35, and $50{\mu}m$, respectively. Three for each type total 15 were produced for each type. The zirconia prosthesis formed a retrievable cement-type slot with a space of 1 mm at the location where the titanium abutment meets the shelf area. Autocatalytic resin cement was used for bonding of abutment and zirconia prosthesis, and the maximum removal stress value was measured in units of Ncm by using the customized equipment of the cemented specimen. The Kruskal-Wallis test was used to compare the three groups by statistical analysis (${\alpha}=.05$), modified by post hoc test the Mann-Whitney U-test and the Bonferroni correction method were used to compare the two methods (${\alpha}=.017$). Results: There was no statistically significant difference in removal stress between the $30{\mu}m$ group and the $35{\mu}m$ group in the internal gap (P = .032), and there was a significant difference between the $30{\mu}m$ group and the $50{\mu}m$ group, between the $35{\mu}m$ group and the $50{\mu}m$ group (P < .017). Conclusion: Thus, the internal gap of computer-aided design affected the retention between the zirconia prosthesis and the titanium abutment.

Combination restorative restorations using conventional partial denture and CAD / CAM (Conventional partial denture와 CAD/CAM을 이용한 combination 보철물 수복)

  • Choi, Seok-yeun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.52-63
    • /
    • 2017
  • When you need to make an upper and lower full-mouth prosthesis, you should design a prosthesis by making an accurate diagnosis and planning well. In particular, in patients with occlusal plane collapsed and misplaced occlusal plane, the patient should be restored to the previous occlusal height and the correct occlusal plane should be created. In addition, appropriate materials should be used to ensure that the patient is able to chew the food well and not force it. When the implants are placed in an inappropriate position, the design of the prosthesis is determined by considering the relationship with the prosthesis and occlusion. Design should be made for the cleanliness around the implant.

Risk indicators related to periimplant disease: an observational retrospective cohort study

  • Poli, Pier Paolo;Beretta, Mario;Grossi, Giovanni Battista;Maiorana, Carlo
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.4
    • /
    • pp.266-276
    • /
    • 2016
  • Purpose: The aim of the present study was to retrospectively investigate the influence of potential risk indicators on the development of peri-implant disease. Methods: Overall, 103 patients referred for implant treatment from 2000 to 2012 were randomly enrolled. The study sample consisted of 421 conventional-length (>6 mm) non-turned titanium implants that were evaluated clinically and radiographically according to preestablished clinical and patient-related parameters by a single investigator. A non-parametric Mann-Whitney U test or Kruskal-Wallis rank test and a logistic regression model were used for the statistical analysis of the recorded data at the implant level. Results: The diagnosis of peri-implant mucositis and peri-implantitis was made for 173 (41.1%) and 19 (4.5%) implants, respectively. Age (${\geq}65$ years), patient adherence (professional hygiene recalls <2/year) and the presence of plaque were associated with higher peri-implant probing-depth values and bleeding-on-probing scores. The logistic regression analysis indicated that age (P=0.001), patient adherence (P=0.03), the absence of keratinized tissue (P=0.03), implants placed in pristine bone (P=0.04), and the presence of peri-implant soft-tissue recession (P=0.000) were strongly associated with the event of peri-implantitis. Conclusions: Within the limitations of this study, patients aged ${\geq}65$ years and non-adherent subjects were more prone to develop peri-implant disease. Therefore, early diagnosis and a systematic maintenance-care program are essential for maintaining peri-implant tissue health, especially in older patients.

Effect of initial placement level and wall thickness on maintenance of the marginal bone level in implants with a conical implant-abutment interface: a 5-year retrospective study

  • Yoo, Jaehyun;Moon, Ik-Sang;Yun, Jeong-Ho;Chung, Chooryung;Huh, Jong-Ki;Lee, Dong-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.3
    • /
    • pp.185-192
    • /
    • 2019
  • Purpose: Implant wall thickness and the height of the implant-abutment interface are known as factors that affect the distribution of stress on the marginal bone around the implant. The goal of this study was to evaluate the long-term effects of supracrestal implant placement and implant wall thickness on maintenance of the marginal bone level. Methods: In this retrospective study, 101 patients with a single implant were divided into the following 4 groups according to the thickness of the implant wall and the initial implant placement level immediately after surgery: 0.75 mm wall thickness, epicrestal position; 0.95 mm wall thickness, epicrestal position; 0.75 mm wall thickness, supracrestal position; 0.95 mm wall thickness, supracrestal position. The marginal bone level change was assessed 1 day after implant placement, immediately after functional loading, and 1 to 5 years after prosthesis delivery. To compare the marginal bone level change, repeated-measures analysis of variance was used to evaluate the statistical significance of differences within groups and between groups over time. Pearson correlation coefficients were also calculated to analyze the correlation between implant placement level and bone loss. Results: Statistically significant differences in bone loss among the 4 groups (P<0.01) and within each group over time (P<0.01) were observed. There was no significant difference between the groups with a wall thickness of 0.75 mm and 0.95 mm. In a multiple comparison, the groups with a supracrestal placement level showed greater bone loss than the epicrestal placement groups. In addition, a significant correlation between implant placement level and marginal bone loss was observed. Conclusions: The degree of bone resorption was significantly higher for implants with a supracrestal placement compared to those with an epicrestal placement.