• Title/Summary/Keyword: implant occlusion

Search Result 403, Processing Time 0.024 seconds

Clinical Evaluation of Implant-Supported Fixed Prostheses (임플란트-지지 고정성 보철물의 임상적 상태에 대한 평가)

  • Park, Chan-Yong;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Jeon, Yeong-Chan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.4
    • /
    • pp.317-326
    • /
    • 2013
  • This study was to compare the cumulative survival rate of implant-supported fixed prostheses and to analyze association between risk factors and cumulative survival rate of implant-supported fixed prostheses. In order to assess the clinical status of implant-supported fixed prostheses, individuals who treated in the Department of Prosthodontics, Pusan National University Dental Hospital, between 2000 to 2007 were examined. The results of this study were as follows: 1. Length of service of implant-supported fixed prostheses was $6.6{\pm}32.0$ years (mean), 11.7 years (median). 2. Age and sex of patient was found to have no statistically significant influence on longevity of implant-supported fixed prostheses (P>.05). 3. Reason of tooth extraction wax found to have statistically significant influence on implant-supported fixed prostheses (P<.05). The longevity of fixed prostheses was low in tooth extraction case due to periodontal disease (median:9.0 years). 4. Location of implant-supported fixed prostheses was found to have statistically significant influence on longevity of fixed prostheses (P<.05). The longevity of fixed prostheses was low in molar region (median:8.8 years). 5. Number of units in implant-supported fixed prostheses was found to have no statistically significant influence on longevity of fixed prostheses (P>.05). 6. Condition of opposing dentition was found to have no statistically significant influence on longevity of implant-supported fixed prostheses (P>.05). 7. Food impaction (40.5%), porcelain fracture (25.8%), screw loosening (23.6%) were frequent complications.

A Telescopic System and Its Clinical Application for the Restoration of the Partially Edentulous Arch (부분 무치악 환자에서 텔레스코프 시스템을 적용한 전악 수복 증례)

  • Shin, Mee-Ran
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.2
    • /
    • pp.139-144
    • /
    • 2007
  • Prosthodontic treatment planning for various edentulous arches is not an easy issue for dentists. Especially, in case of removable partial denture, we must have a knowledge of overall treatment procedures, and a careful approach is needed. Recently, interest of dental implant and case reports are increasing, the decrease of the removable partial denture is true, but dental implantation takes longer treatment period and it is more expensive. Also, there are still some limitations like lack of available alveolar bone, patient's general condition, and chronic periodontitis. Therefore, sometimes implantation is impossible. Finally, implantation cannot be adapted to every single patient. Currently, the clasp type removable partial dentures are used routinely, giving patients many unesthetic and functional difficulties. With better laboratory technique, removable partial denture with attachment and removable partial denture in rigid type increase patient's happiness level much more than predicted. The case presented in this article, clinically demonstrate the efficiency of using a telescopic system to improve esthetic and functional recovery for patients who lose multiple teeth.

Applications of Fiber Reinfored Composite in Dental Practice (Fiber Reinforced Composite를 이용한 치료 증례)

  • Cho, Jin-Hyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • This case reports describe a new approach to the use of polymers in orthodontics, using a fiber reinforced composite(FRC). FRC was successfully used in a periodontal splints, fiber post for endodontic use, orthodontic retainer and space maintainers, implant prosthesis, large span bridge, management of cracked tooth, anchorage reinforcement in orthodontics. FRC has highly favorable mechanical properties, and its strength-to-weight ratios is superior to those of most alloys. FRC has potential for use in many applications in dentistry and is expected to gain increasing application and popularity in dentistry. These case reports show that FRC is a promising anchorage reinforcement material for use in orthodontic practice.

Laser therapy in dentinal hypersensitivity and periodontal treatment (상아질 지각과민증과 치주 처치에서 레이저의 이용)

  • Namgung, Cheol;Lee, Jong-Ho;Kum, Kee-Yeon;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.4
    • /
    • pp.307-314
    • /
    • 2014
  • Although a laser has been introduced to implant dentistry for decades, its efficacy is still open debate. The aim of this literature review is to analyze and evaluate the efficacy of laser therapy for the treatment of dentinal hypersensitivity and periodontal conditions.

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND DEFORMATION IN MANDIBLE ACCORDING TO THE POSITION OF PONTIC IN TWO IMPLANTS SUPPORTED THREE-UNIT FIXED PARTIAL DENTURE (두 개의 임플란트를 이용한 3본 고정성 국소의치에서 가공치 위치에 따른 하악골에서의 응력 분포 및 변형에 관한 삼차원 유한요소법적 연구)

  • Kim, Dong-Su;Kim, Il-Kyu;Jang, Keum-Soo;Park, Tae-Hwan;Kim, Kyu-Nam;Son, Choong-Yul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.166-179
    • /
    • 2008
  • Excessive concentration of stress which is occurred in occlusion around the implant in case of the implant supported fixed partial denture has been known to be the main cause of the crestal bone destruction. Therefore, it is essential to evaluate the stress analysis on supporting tissue to get higher success rates of implant. The purpose of this study was to evaluate the effects of stress distribution and deformation in 3 different types of three-unit fixed partial denture sup-ported by two implants, using a three dimensional finite element analysis in a three dimensional model of a whole mandible. A mechanical model of an edentulous mandible was generated from 3D scan, assuming two implants were placed in the left premolars area. According to the position of pontic, the experiments groups were divided into three types. Type I had a pontic in the middle position between two implants, type II in the anterior posi-tion, and type III in the posterior position. A 100-N axial load was applied to sites such as the central fossa of anterior and posterior implant abutment, central fossa of pontic, the connector of pontic or the connector between two implants, the mandibular boundary conditions were modeled considering the real geometry of its four-masticatory muscular supporting system. The results obtained from this study were as follows; 1. The mandible deformed in a way that the condyles converged medially in all types under muscular actions. In comparison with types, the deformations in the type II and type III were greater by 2-2.5 times than in the type I regardless of the loading location. 2. The values of von Mises stresses in cortical and cancellous bone were relatively stable in all types, but slightly increased as the loading position was changed more posteriorly. 3. In comparison with type I, the values of von Mises stress in the implant increased by 73% in Type II and by 77% in Type III when the load was applied anterior and posterior respectively, but when the load was applied to the middle, the values were similar in all types. 4. When the load was applied to the centric fossa of pontic, the values of von Mises stress were nearly $30{\sim}35%$ higher in the type III than type I or II in the cortical and cancellous bone. Also, in the implant, the values of von Mises stress of the type II or III were $160{\sim}170%$ higher than in the type I. 5. When the load was applied to the centric fossa of implant abutment, the values of von Mises stress in the cortical and cancellous bone were relatively $20{\sim}25%$ higher in the type III than in the other types, but in the implant they were 40-45% higher in the type I or II than in the type III. According to the results of this study, musculature modeling is important to the finite element analysis for stress distribution and deformation as the muscular action causes stress concentration. And the type I model is the most stable from a view of biomechanics. Type II is also a clinically accept-able design when the implant is stiff sufficiently and mandibular deformation is considered. Considering the high values of von Mises stress in the cortical bone, type III is not thought as an useful design.

Effect of Bone Quality on Insertion Torque during Implant Placement; Finite Eelement Analysis (임플란트 식립 시 골질이 주입회전력에 미치는 영향에 관한 삼차원 유한요소 분석)

  • Jeong, Jae Doug;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.109-123
    • /
    • 2009
  • The aim of the study was to assess the influence of insertion torque of bone quality and to compare axial force, moment and von Mises stress using finite element analysis of plastoelastic property for bone stress and strain by dividing bone quality to its thickness of cortical bone, density of trabecular bone and existence of lower cortical bone when implant inserted to mandibular premolar region. The $Br{\aa}nemark$ MKIII. RP implant and cylindrical bone finite model were designed as cortical bone at upper border and trabecular bone below the cortical bone. 7 models were made according to thickness of cortical bone, density of trabecular bone and bicortical anchorage and von Mises stress, axial force and moment were compared by running time. Dividing the insertion time, it seemed 300msec that inferior border of implant flange impinged the upper border of bone, 550msec that implant flange placed in middle of upper border and 800msec that superior border of implant flange was at the same level as bone surface. The maximum axial force peak was at about 500msec, and maximum moment peak was at about 800msec. The correlation of von Mises stress distribution was seen at both peak level. The following findings were appeared by the study which compared the axial force by its each area. The axial force was measured highest when $Br{\aa}nemark$ MKIII implant flange inserts the cortical bone. And maximal moment was measured highest after axial force suddenly decreased when the flange impinged at upper border and the concentration of von Mises stress distribution was at the same site. When implant was placed, the axial force and moment was measured high as the cortical bone got thicker and the force concentrated at the cortical bone site. The influence of density in trabecular bone to axial force was less when cortical bone was 1.5 mm thick but it might be more affected when the thickness was 0.5 mm. The total axial force with bicortical anchorage, was similar when upper border thickness was the same. But at the lower border the axial force of bicortical model was higher than that of monocortical model. Within the limitation of this FEA study, the insertion torque was most affected by the thickness of cortical bone when it was placed the $Br{\aa}nemark$ MKIII implant in premolar region of mandible.

The Effect of Temporary Cement Cleaning Methods on the Retentive Strength of Cementation Type Implant Prostheses (임시 시멘트 제거방법이 시멘트 유지형 임플란트 보철물의 유지력에 미치는 영향)

  • Shin, Hwang-Kyu;Song, Young-Gyun;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.125-140
    • /
    • 2011
  • The remnant of temporary cement on the intaglio surface of cast restoration may have a negative effect on the retentive strength of permanent cement. This study was to evaluate the effect of temporary cement cleaning methods on the retentive strength of cementation type implant prostheses. Prefabricated implant abutments - height 5.5mm, diameter 4.5mm, 6 degree axial wall taper with chamfer margins were used. Forty copings-abutment specimens were divided into four groups(each n=10) according to the cleaning methods for temporary cement(Temp-$Bond^{(R)}$) as follows : no temporary cementation(the control group), orange solvent, ultrasonic cleaning, air borne-particle abrasion. After the application of temporary cement and the separation, the cleaning procedure was performed according to the protocol of each group. The specimens were cemented with $Premier^{(R)}$ Implant $Cement^{TM}$. After the permanent cementation, the specimens were subjected to thermocycling and pulled out from the specimens with a universal testing machine at a cross-head speed of 0.5mm/min. After the retentive strength test, all the specimens were cleaned using ultrasonic cleaning, abraded with air borne-particles, and steam-cleaned. Likewise, the specimens were temporarily cemented(Temp-$Bond^{(R)}$ NE), cleaned according to the protocol of each group, cemented with $Premier^{(R)}$ Implant $Cement^{TM}$ and subjected to thermocycling and measurement of their retentive strength. The mean of group with orange solvent were significantly lower than those of other groups(p<0.05). There was no significance between group with ultrasonic cleaning and group with air borne-particle abrasion. Group with ultrasonic cleaning and group with air-particle abrasion were no significance at control group. There was no significance between group cemented with Temp-$Bond^{(R)}$ and group cemented with Temp-$Bond^{(R)}$ NE. Within the limitation of this study, it can be concluded that the temporary cement cleaning method with only orange solvent may have a negative effect on the retentive strength of permanent cement. Ultrasonic cleaning and air borne-particle abrasion methods are recommended for the temporary cement cleaning method on cementation type implant prostheses.

The thickness of alveolar bone at the maxillary canine and premolar teeth in normal occlusion

  • Jin, Seong-Ho;Park, Jun-Beom;Kim, Namryang;Park, Seojin;Kim, Kyung Jae;Kim, Yoonji;Kook, Yoon-Ah;Ko, Youngkyung
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.5
    • /
    • pp.173-178
    • /
    • 2012
  • Purpose: The main purpose of this study was to investigate bone thickness on the buccal and palatal aspects of the maxillary canine and premolars using cone-beam computed tomography (CBCT). The differences between left- and right-side measurements and between males and females were also analyzed. Methods: The sample consisted of 20 subjects (9 males and 11 females; mean age, $21.9{\pm}3.0$) selected from the normal occlusion sample data in the Department of Orthodontics, The Catholic University of Korea. The thickness of the buccal and palatal bone walls, perpendicular to the long axis of the root were evaluated at 3 mm and 5 mm apical to cemento-enamel junction (CEJ) and at root apex. Results: At the canines and first premolars regions, mean buccal bone thickness of at 3 mm and 5 mm apical to CEJ were less than 2 mm. In contrast, at the second premolar region, mean buccal bone thickness at 3 mm and 5 mm apical from CEJ were greater than 2 mm. Frequency of thick bone wall (${\geq}2mm$) increased from the canine to the second premolar. Conclusions: This result should be considered before tooth extraction and planning of rehabilitation in the canine and premolar area of maxilla. Careful preoperative analysis with CBCT may be beneficial to assess local risk factors and to achieve high predictability of success in implant therapy.

Concept and application of implant connection systems: Part I. Placement and restoration of internal conical connection implant (임플란트 연결부의 개념과 적용: Part 1. 원추형 내부연결 임플란트의 식립과 보철)

  • Ko, Kyung-Ho;Kang, Hyeon-Goo;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.211-221
    • /
    • 2020
  • The typical biomechanical properties of an internal conical connection (ICC) are axial displacement and loss of preload. The axial displacement of an ICC without a vertical stop can cause the loss of preload and a lowered occlusion. The stress of an ICC is concentrated on the contact interface of the abutment and not on the screw, and during placement, it is important to choose a wider coronal wall thickness as much as possible. The ICC should also be placed below the level of the bone crest. During the restoration of an ICC, care should be taken to ensure an appropriate abutment shape and an accurate connection. To get the best clinical results, it is important to select its wall thickness and place it in the appropriate position to restore it adequately.