• Title/Summary/Keyword: implant occlusion

Search Result 402, Processing Time 0.032 seconds

Stress analysis according to the vertical bone level in the implant placement (임플란트 매식 시 수직골 높이에 따른 응력분석)

  • Kim, Min-Ho;Park, Young-Rok;Kay, Kee-Sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.301-311
    • /
    • 2002
  • The purpose of this study was to compare the distributing pattern of stress on the finite element models with the different vertical bone level of implant fixture. The two kinds of finite element models were designed according to vertical bone level around fixture ($4.0mm{\times}11.5mm$). The cemented crowns for mandibular first and second molars were made. Three- dimensional finite element model was created with the components of the implant and surrounding bone. Vertical loads were applied with force of 200N distributed within 0.5mm radius circle from the center of central fossa and distance 2mm and 4 mm apart from the center of central fossa. Von-Mises stresses were recorded and compared in the supporting bone, fixtures, abutment screws, and crown. The results were as following : (1) In vertical loading at the center circle of central fossa on model 1 and 2, the difference from vertical bone in implant placement did not affect the stress pattern on all components of implant except for crown. (2) With offset distance incerasing and the bone level of implant decreasing, the concentration of stress occured in the buccal side of long crown, around the buccal crestal bone, and on the fixture- abutment interface. As a conclusion, the research showed a tendency to increase the stress on the supporting bone, fixture and screw under the offset loads when the vertical level of bone around fixture was different. Since the same vertical bone bed has more benefits than the different bone bed around fixtures, it is important to prepare a same vertical level of bone bed for the success of implants under occlusal loads.

Full mouth rehabilitation utilizing implant-assisted removable partial denture with a canted occlusal plane: a case report (경사진 교합평면을 갖는 환자에서 임플란트 보조 국소의치를 이용한 전악 수복 증례)

  • Han, A-Reum;Kwon, Tae-Min;Kim, Kyoung-A;Seo, Jae-Min
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.214-223
    • /
    • 2016
  • Implant-assisted removable partial denture (Implant-assisted RPD, IARPD), posterior edentulous extension areas of which obtains additional support and retention from implants, is attracting increasing interest. This case report presents a successful treatment on a partially edentulous patient with a severely canted occlusal plane resulted from a long-term use of posterior extended RPD. The full mouth was rehabilitated through a fixed prosthesis on maxilla and IARPD with zirconia occlusal surface on mandible, which allowed to achieve an esthetic occlusal plane with long-term stability and, ultimately, functionally satisfying outcome.

Load response of the natural tooth and dental implant: A comparative biomechanics study

  • Robinson, Dale;Aguilar, Luis;Gatti, Andrea;Abduo, Jaafar;Lee, Peter Vee Sin;Ackland, David
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.169-178
    • /
    • 2019
  • PURPOSE. While dental implants have displayed high success rates, poor mechanical fixation is a common complication, and their biomechanical response to occlusal loading remains poorly understood. This study aimed to develop and validate a computational model of a natural first premolar and a dental implant with matching crown morphology, and quantify their mechanical response to loading at the occlusal surface. MATERIALS AND METHODS. A finite-element model of the stomatognathic system comprising the mandible, first premolar and periodontal ligament (PDL) was developed based on a natural human tooth, and a model of a dental implant of identical occlusal geometry was also created. Occlusal loading was simulated using point forces applied at seven landmarks on each crown. Model predictions were validated using strain gauge measurements acquired during loading of matched physical models of the tooth and implant assemblies. RESULTS. For the natural tooth, the maximum vonMises stress (6.4 MPa) and maximal principal strains at the mandible ($1.8m{\varepsilon}$, $-1.7m{\varepsilon}$) were lower than those observed at the prosthetic tooth (12.5 MPa, $3.2m{\varepsilon}$, and $-4.4m{\varepsilon}$, respectively). As occlusal load was applied more bucally relative to the tooth central axis, stress and strain magnitudes increased. CONCLUSION. Occlusal loading of the natural tooth results in lower stress-strain magnitudes in the underlying alveolar bone than those associated with a dental implant of matched occlusal anatomy. The PDL may function to mitigate axial and bending stress intensities resulting from off-centered occlusal loads. The findings may be useful in dental implant design, restoration material selection, and surgical planning.

In Vitro Study on the Initial Stability of Two Tapered Dental Implant Systems in Poor Bone Quality (연질 골에서 두 종류의 테이퍼 형태 임플란트의 초기 안정성에 관한 실험실적 연구)

  • Kim, Duck-Rae;Kim, Myung-Joo;Kwon, Ho-Beom;Lee, Seok-Hyung;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.391-401
    • /
    • 2009
  • The successful outcome of dental implants is mainly the result of intial implant stability following placement. The aim of this study was to investigate the effect of a self-tapping blades and implant design on initial stability of two tapered implant systems in poor bone quality. The two different implant systems included one with self-tapping blades and one without self-tapping blades. D4 bone model using Solid Rigid Polyurethane Form was used to simulate poor bone densities. The insertion torque during implant placement was recorded. Resonance frequency Analysis (RFA), measured as the implant stability quotient (ISQ), was assessed immediately after insertion. Finally, the implant-bone specimen was transferred to an Universal Testing Machine to measure the axial pull-out force. Insertion torque values and maximum pull-out torque value of the non self-tapping implants were significantly higher than those in the self-tapping group (P = 0.008). No statistically differences were noted between the two implant designs in RFA. Within the each implant system, no correlation among insertion torque, maximum pull-out torque and RFA value could be determined. Higher insertion torque of the non-self-tapping implants appeared to confirm higher clinical initial stability. In conclusion, implants without self-tapping blades have higher initial stability than implants with self-tapping blades in poor bone quality.

Effect of Implant Designs on Insertion Torque and Stress : Three-Dimensional Finite Element Analysis (임플란트 디자인이 식립 회전력과 응력에 미치는 영향에 관한 삼차원 유한요소 분석)

  • Kim, Jang-Eung;Choi, Yu-Sung;Lim, Jong-Hwa;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.205-220
    • /
    • 2010
  • Purpose : To analyze the effect of implant designs on insertion torque and stress by performing a comparative study on von Mises stress, torque and normal force through a three-dimensional finite element analysis. Materials and methods : Models of the screw type implant were used to model the implant as a form placed in the mandibular premolar region applying a three-dimensional finite element method. Screw type implant designs were classified into 4 types of parallel ones and 7 types of tapered ones. Other factors were simulated to represent clinical environment. Results : In parallel implant designs, higher and wider threads resulted in higher insertion torques and higher stress distributions. In tapered implant designs, changes in the taper led to remarkable differences in the insertion torques. It was difficult to determine a certain tendency of stress distribution around the implants since the stress level was too high around them. In tapered implant designs, smaller implants demonstrated lower insertion torques than the original type and were relatively less dependent on the degree of taper. Tapered implants showed higher insertion torques and higher stress distributions than parallel implants. Conclusion : According to this study, although the tapered implant demonstrated a higher insertion torque than the parallel implant, stress tended to be concentrated in the entire fixture of the tapered implant due to the inefficient stress distribution.

Autograft Surgery Using the Condylar Fragment for Implant Placement

  • Kim, Yeo-Gab;Kwon, Yong-Dae;Yoon, Byung-Wook;Choi, Byung-Joon;Yu, Yong-Jae;Lee, Baek-Soo
    • Journal of Korean Dental Science
    • /
    • v.1 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • The fracture of facial bone usually accompanies alveolar bone fracture and dislocation or fracture of teeth. Thus, aside from the reduction of fracture, the reconstruction of occlusion through the rehabilitation of lost teeth should be considered. The dislocation of tooth after trauma accompanying alveolar bone fracture needs bone grafting in case of implant treatment. Although autogenous bone graft shows good prognosis, it has the disadvantage of requiring a secondary surgery. This is a case of a mandibular condyle head fracture accompanied by alveolar bone fracture. The condylar head fragment removed during open reduction was grafted to the alveolar bone fracture site, thereby foregoing the need for secondary surgery.

  • PDF

An innovative prostheses design for rehabilitation of severely mutilated dentition: a case report

  • Abduo, Jaafar
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • Partial edentulism has multiple implications in relation to function, esthetics and future rehabilitative treatment. This case report illustrates the management of a patient with extreme consequences of partial edentulism. The main clinical findings were unopposed remaining teeth, overeruption of the remaining teeth, loss of vertical dimension of occlusion, and significant disfigurement of the occlusal plane. Following the diagnostic procedure, a well-coordinated prosthodontic treatment involving liaison with other dental disciplines was indicated. The management involved an innovative combination of fixed and removable prostheses in conjunction with crown lengthening surgery and strategic implant placement. Series of provisional prostheses were applied to facilitate the transition to the final treatment.

Mandibular second and third molar protraction with orthodontic mini-implants: case report (교정용 미니임플란트를 이용한 하악 제2, 3대구치의 전방이동 : 증례보고)

  • Choi, Sung-Kwon;Kang, Kyung-Hwa
    • The Journal of the Korean dental association
    • /
    • v.57 no.11
    • /
    • pp.654-663
    • /
    • 2019
  • This case report describes the management of a 30-year-old woman with hopeless mandibular first molars and right maxillary second premolar. The treatment plan included mandibular second and third molar protraction after extraction of mandibular first molars. Mini-implants were placed between roots of first and second premolar. Sliding mechanics with lever arm was used to prevent inclination of molars. A good functional occlusion was achieved in 38 months without clinically significant side effects. Most of the extraction space of mandibular first molar was closed by protraction of second and third molars. The skeletal Class II pattern was improved by counterclockwise rotation of mandible through reduction of wedge effect. Mandibular molar protraction with orthodontic mini-implants in adequate cases would be a great alternative to prosthetic implant and reduce the financial and surgical burden of patients.

  • PDF

A study on the micromotion between the dental implant and superstructure (임플란트와 상부구조물 사이의 micromotion에 관한 연구)

  • Kim, Ji-Hye;Song, Kwang-Yeob;Jang, Tae-Yeob;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Treatment with implants of single tooth missing cases is both functional and esthetic. Although the success rate of single-tooth implant treatments is increasing, sometimes it makes some problems. Problems with single-tooth implant treatments include soft tissue complications, abutment screw fracture, and most commonly, abutment screw loosening, and these involve the instability of the dental implant-superstructure interface. This study investigated and compared dental implant screw joint micromotion of various implant system with external connection or internal connection when tested under simulated clinical loading, Six groups (N=5) were assessed: (1) Branemark AurAdapt (Nobel Biocare, Goteborg, Sweden), (2) Branemark EsthetiCone (Nobel Biocare, Goteborg, Sweden), (3) Neoplant Conical (Neobiotec, Korea), (4) Neoplant UCLA (Neobiotec, Korea), (5) Neoplant 5.5mm Solid (Neobiotec, Korea), and (6) ITI SynOcta (Institute Straumann, Waldenburg, Switzerland). Six identical frameworks were fabricated. Abutment screws were tightened to 32-35 Ncm and occlusal screw were tightened to 15-20 Ncm with an electronic torque controller. A mechanical testing machine applied a compressive cyclic load of 20kg at 10Hz to a contact point on each implant crown. Strain gauge recorded the micromotion of the screw joint interface once a second. Data were selected at 1, 500, 5,000, 10,000, 20,000, 30,000, 40,000 and 50,000 cycle and 2-way ANOVA test was performed to assess the statistical significance. The results of this study were as follows; The micromotion of the implant-superstructure in the interface increased gradually through 50,000 cycles for all implant systems. In the case of the micromotion according to cycle increase, Neoplant Conical and Neoplant UCLA system exhibited significantly increasing micromotion at the implant-superstructure interface (p<0.05), but others not significant. In the case of the micromotion of the implant-superstructure interface at 50,000 cycle, the largest micromotion were recorded in the Branemark EsthetiCone, sequently followed by Neoplant Conical, Neoplant UCLA, Branemark AurAdapt, ITI SynOcta and Neplant Solid. Internal connection system showed smaller micromotion than external connection system. Specially, Neoplant Solid with internal connection system exhibited significantly smaller micromotion than other implant systems except ITI SynOcta with same internal connection system (p<0.05). In the case of external connection, Branemark EsthetiCone and Neoplant Conical system with abutment showed significantly larger micromotion than Branemark AurAdapt without abutment (p<0.05).

Discussion of Neurologic Factor Influencing on Chewing Ability of Implant (임플란트 저작능에 영향을 주는 신경학적 원인에 대한 고찰)

  • Kim, Tae-Seon;Yoon, Jun-Ho;Kim, Sung-Hoi;Kim, Jee-Hwan;Shim, June-Sung;Lee, Jae-Hoon;Moon, Hong-Suk;Park, Young-Bum
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • Many researches have been published about the numerous factors related to the chewing ability of implant prosthesis. Most respective studies have concluded that the chewing ability of implant prosthesis is mostly fine compared to other type of prosthesis. However, some patients are not satisfied with their chewing ability of implant prosthesis. Therefore the neurologic factor, one of the factors related to dissatisfaction of chewing ability was reviewed in this study to understand the mechanism of action of mastication. Data was searched using the keywords; 'implant chewing ability, masticatory ability' in Pubmed database and reviewed. Definitions of chewing ability, factors of chewing ability are reviewed and the neurologic factor, one of the factors influencing on chewing ability, is reviewed. Mechanoreceptor of Periodontal ligament(PDL) is providing the mastication information to brainstem. Due to the absence of mechanoreceptions of PDL in implant, masticatory ability is decreased especially when chewing hard food. Masticatory muscles and mechanoreceptor in TMD may compensate the lack of mechanoreceptor of PDL in implants. Furthermore sensitivity of nerve fiber around peri-implant tissues may support the mechanoreception and sensory reaction in the implant mastication. However, further studies should be conducted to prove the relationships between neurologic factors and mastication.