• 제목/요약/키워드: impeller geometry

검색결과 59건 처리시간 0.033초

유동해석에 의한 연료전지용 수소 재순환 블로워 개발 (Development of Hydrogen Recirculation Blower for Fuel Cell Vehicle by Flow Analysis)

  • 심창열;홍창욱;김영수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.684-689
    • /
    • 2005
  • Parametric calculation were conducted to estimate performance of variable geometry of hydrogen recirculation blower for fuel cell vehicle. The pressure rise and efficiency are effected by change of the geometric parameter of impeller and casing, and stripper clearance under various mass flow. Hydrodynamic performance were evaluated, and also the inner flow fields were investigated by CFD. Calculated results show good coincidence with experimental test results of total pressure performance. Performance of model designed by parametric calculations satisfied experimental data of verification model.

  • PDF

CFD를 이용한 해수냉각펌프의 내부유동 분석 (Internal Flow Analysis of Seawater Cooling Pump using CFD)

  • ;양창조;김부기;김준호
    • 해양환경안전학회지
    • /
    • 제23권1호
    • /
    • pp.104-111
    • /
    • 2017
  • 본 연구는 원심펌프 내부 유동장 특성에 대한 시뮬레이션 및 시각화에 중점을 둔다. 3D 수치해석은 Reynolds Average Navier-stock 코드를 k-${\varepsilon}$ 표준 2차방정식 난류 모델로 처리하여 수행하였다. 시뮬레이션은 흡입측, 임펠러, 토출측 영역에서 조도로 인한 마찰 손실과 임펠러 웨어링에서 체적 손실을 포함한다. 해석과 실험사이의 성능곡선 비교결과 최대 5 %의 작은 차이를 보이며 동일한 추세를 나타냈다. 최고 효율점에서 속도 벡터는 고르게 나타났지만 비 설계점에서는 현저한 변화가 나타났고, 텅 부근의 임펠러 유로토출부에서 강력한 재순환 영역이 나타났다. 비교적 일정한 압력분포가 텅 부근임에도 불구하고 임펠러 주위에 관찰되었다. 볼류트 내에서 기하학적으로 인해 형성된 나선형 와류가 이 영역에서 유동장이 상대적으로 난류이고 불안정하다는 것을 증명하였다.

볼류트 형상이 원심 펌프의 성능에 미치는 영향에 대한 수치 해석적 연구 (A Numerical Study on the Effect of Volute Geometry on the Performance of Centrifugal Pump)

  • 김덕수;전상규;윤준용;최영석
    • 한국유체기계학회 논문집
    • /
    • 제9권2호
    • /
    • pp.44-49
    • /
    • 2006
  • In this study, the effects of volute area distribution on the performance of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate, the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequently required. In order to control the shutoff head of a pump, several volute cross-sectional area distributions were proposed as a main parameter with the same impeller geometry The calculation results show that the slope of the performance characteristic curve of the centrifugal pump can be controlled by modifying the area distribution from volute tongue to volute outlet with fixed volute outlet area and also varied volute outlet area.

볼류트 형상이 원심 펌프의 성능에 미치는 영향에 대한 수치 해석적 연구 (A Numerical Study on the effect of Volute Geometry on the Performance of Centrifugal Pump)

  • 김덕수;최영석;전상규;윤준용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.497-502
    • /
    • 2005
  • In this study. the effect of volute area distribution on the performance of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate. the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequently required. In order to control the shutoff head of a pump, several volute cross-sectional area distributions were proposed as a main parameter with the same impeller geometry. The calculation results show that the slope of the performance characteristic curve of the centrifugal pump can be controlled by modifying the area distribution from volute tongue to volute outlet with fixed volute outlet area and also varied volute outlet area.

  • PDF

Effects of Acoustic Resonance and Volute Geometry on Phase Resonance in a Centrifugal Fan

  • Tsujimoto, Yoshinobu;Tanaka, Hiroshi;Doerfler, Peter;Yonezawa, Koichi;Suzuki, Takayuki;Makikawa, Keisuke
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권2호
    • /
    • pp.75-86
    • /
    • 2013
  • The effects of acoustic resonance and volute geometry on phase resonance are studied theoretically and experimentally using a centrifugal fan. One dimensional theoretical model is developed taking account of the reflection from the discharge pipe end. It was found that the phase resonance occurs, even with the effects of acoustic resonance, when the rotational speed of rotor-stator interaction pattern agrees with the sound velocity. This was confirmed by experiments with and without a silencer at the discharge pipe exit. The pressure wave measurements showed that there are certain effects of the cross-sectional area change of the volute which is neglected in the one dimensional model. To clarify the effects of area change, experiments were carried out by using a ring volute with a constant area. It was demonstrated that the phase resonance occurs for both interaction modes travelling towards/away from the volute. The amplitude of travelling wave grows towards the volute exit for the modes rotating towards the volute exit, in the same direction as the impeller. However, a standing wave is developed in the volute for the modes rotating away from the volute exit in the opposite direction as the impeller, as a result of the interaction of a growing wave while travelling towards the tongue and a reflected wave away from the tongue.

수치해석을 통한 ECMO용 원심형 혈액 펌프 설계 (DESIGN OF A CENTRIFUGAL BLOOD PUMP FOR ECMO DEVICE THROUGH NUMERICAL ANALYSES)

  • 최신화;허남건;;강성원;김원정;강신형
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.103-109
    • /
    • 2016
  • With the rapid increase in the number of patients with cardiopulmonary diseases, more cardiopulmonary circulatory assist devices are also needed. These devices can be employed when heart and/or lung function poorly. Due to the critical role they take, these devices have to be designed optimally from both mechanical and biomechanical aspects. This paper presents the CFD results of a baseline model of a centrifugal blood pump for the ECMO condition. The details of flow characteristics of the baseline model together with the performance curves and the modified index of hemolysis(MIH) are investigated. Then, the geometry of baseline impeller and the volute are modified in order to improve the biomechanical performance and reduce the MIH value. The numerical simulations of two cases represent that when impeller radius and prime volume decrease the MIH value also decreases. In addition, the modified geometry shows more uniform pressure distribution inside the volute. The findings provide valuable information for further modification and improvement of centrifugal blood pumps from both mechanical and biomechanical aspects.

박용 터보차져의 원심압축기의 디퓨져 형상변경에 따른 성능비교 및 유동특성 평가 연구 (The Evaluation of Performance and Flow Characteristics on the Diffuser Geometries Variations of the Centrifugal Compressor in a Marine Engine Turbocharger)

  • 김홍원;하지수;김봉환
    • 한국유체기계학회 논문집
    • /
    • 제11권2호
    • /
    • pp.55-63
    • /
    • 2008
  • An examination of the condition of the flow leaving the impeller exit kinetic energy often accounts for 30-50% of the shaft work input to the compressor stage, and for energy efficiency it is important to recover as much of this as possible. This is the function of the diffuser which follows the impeller. The purpose of this study is to investigate the sensitivity of how compressor performances changes as vaned diffuser geometry is varied. Three kinds of vaned diffusers were studied and its results were compared. First vaned diffuser type is based on NACA airfoil and second is channel diffuser and third is conformal transformation of NACA65(4A10)06 airfoil. Mean-line prediction method was applied to investigate the performance and stability for three kinds of diffusers. And CFD analyses have been done for comparison and detailed interior flow pattern study. NACA65(4A10)06 airfoil showed the widest operating range and higher pressure characteristics than the others.

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

교반탱크에서 베플 형상의 영향에 관한 수치 해석적 연구 (A Numerical Analysis on Effect of Baffles in a Stirred Vessel)

  • 염상훈;이석순
    • 항공우주시스템공학회지
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 2019
  • 교반기에서의 유동 특성은 광범위한 산업 분야에서 매우 유용하다. 일반적으로 교반되는 용기에서의 유동 패턴, 전력 소비 및 혼합 시간은 임펠러의 설계뿐만 아니라 용기 형상 및 내부 구조에 달려 있다. 본 연구에서는 베플 형상과 임펠러의 상호 작용에 의해 생성되는 불안정하고 비정상상태의 복잡한 유동 특성 분석을 ANSYS FLUENT LES 난류 모델을 사용하여 수행하였다. Axial Flow 와 Radial Flow 두 가지 타입의 회전 임펠러와 3가지 베플의 형상 사이의 상호 작용과 영향을 전산유체역학(CFD)으로 예측 비교함으로써 교반 시 임펠러와 베플 주변에서의 유동 특성과 혼합 유동장에서 상대적으로 효율적인 경향을 보이는 설계 모델을 검증할 수 있었다.

레인지 후드용 시로코 홴의 성능 향상을 위한 연구 (Numerical study on the Performance Improvement of the Sirocco Fan in a Range Hood)

  • 박상태;최영석;박문수;김철호;권오명
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.572-577
    • /
    • 2004
  • This paper presents numerical study on the performance improvement of the sirocco fan in a range hood. The performance of sirocco fan means a higher flowrate, a higher static pressure and a lower required motor power in a fixed geometry constraint. Various impeller geometric parameters, such as blade profile, blade diameter, blade thickness profile and blade exit angle, were investigated by numerically and the results were compared with each other to know the effects on the performance. In this approach, the volute geometry were fixed with the original shape. The numerical results show that the blade profile with airfoil shape and small exit blade thickness increases the performance. The blade exit angle shows optimum angle within a varied range. The efficiency of the optimized exit angle was about $10\%$ higher than the base blade exit angle and the static pressure was about $28\%$ higher at the flow coefficient 0.22.

  • PDF