• Title/Summary/Keyword: impedance-based method

Search Result 603, Processing Time 0.025 seconds

Synthesis and Characterization of LSGM Solid Electrolyte for Solid Oxide Fuel Cell (연료전지용 LSGM 페로브스카이트계 전해질의 합성 및 특성 연구)

  • Seong, Young-Hoon;Jo, Seung-Hwan;Muralidharan, P.;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.696-702
    • /
    • 2007
  • The family of (Sr,Mg)-doped $LaGaO_3$ compounds, which exhibit high ionic conductivity at $600-800^{\circ}C$ over a wide range of oxygen partial pressure, appears to be promising as the electrolyte for intermediate temperature solid oxide fuel cells. Conventional synthesis routes of (Sr,Mg)-doped $LaGaO_3$ compounds based on solid state reaction have some problems such as the formation of impurity phases, long sintering time and Ga loss during high temperature sintering. Phase stability problem especially, the formation of additional phases at the grain boundary is detrimental to the electrical properties of the electrolyte. From this point of view, we focused to synthesize single phase (Sr,Mg)-doped $LaGaO_3$ electrolyte at the stage of powder synthesis and to apply relatively low heat-treatment temperature using novel synthesis route based on combustion method. The synthesized powder and sintered bulk electrolytes were characterized by XRD, TG-DTA, FT-IR and SEM. AC impedance spectroscopy was used to characterize the electrical transport properties of the electrolyte with the consideration of the contribution of the bulk lattice and grain boundary to the total conductivity. Finally, relationship between synthesis condition and electrical properties of the (Sr, Mg)-doped $LaGaO_3$ electrolytes was discussed with the consideration of phase analysis results.

Development of Real-time Diagnosis Method for PEMFC Stack via Intermodulation Method (Intermodulation 방법에 의한 자동차용 연료전지 스택의 실시간 진단방법 개발)

  • Lee, Young-Hyun;Yoo, Seungyeol;Kim, Jonghyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.76-83
    • /
    • 2014
  • During PEMFC(Proton Exchange Membrane Fuel Cell) operation monitoring and diagnosis are important issues for reliability and durability. Stack defect can be followed by a critical cell voltage drop in the stack. One method for monitoring the cell voltage is CVM(Cell Voltage Monitoring), where all cells in the stack are electrically connected to a voltage measuring system and monitored these voltages. The other methods are based on the EIS(Electrochemical Impedance Spectroscopy) and on nonlinear frequency response. In this paper, intermodulation(IM) method for diagnosis PEMFC stack is introduced. To detect one or more critical PEMFC cell voltage PEMFC stack is excited by two or more test sinusoid current, and the frequency response of the stack voltage is analyzed. If one or more critical cell voltage exists, higher harmonics on the voltage frequency spectrum will appear. For the proposed IM method, stack simulation and experiments are conducted.

The Advanced Voltage Regulation Method for ULTC in Distribution Systems with DG

  • Kim, Mi-Young;Song, Yong-Un;Kim, Kyung-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.737-743
    • /
    • 2013
  • The small-scaled onsite generators such as photovoltaic power, wind power, biomass and fuel cell belong to decarbonization techniques. In general, these generators tend to be connected to utility systems, and they are called distributed generations (DGs) compared with conventional centralized power plants. However, DGs may impact on stabilization of utility systems, which gets utility into trouble. In order to reduce utility's burdens (e.g., investment for facilities reinforcement) and accelerate DG introduction, the advanced operation algorithms under the existing utility systems are urgently needed. This paper presents the advanced voltage regulation method in power systems since the sending voltage of voltage regulators has been played a decisive role restricting maximum installable DG capacity (MaxC_DG). For the proposed voltage regulation method, the difference from existing voltage regulation method is explained and the detailed concept is introduced in this paper. MaxC_DG estimation through case studies based on Korean model network verifies the superiority of the proposed method.

Comparative Analysis and Performance Evaluation of New Low-Power, Low-Noise, High-Speed CMOS LVDS I/O Circuits (저 전력, 저 잡음, 고속 CMOS LVDS I/O 회로에 대한 비교 분석 및 성능 평가)

  • Byun, Young-Yong;Kim, Tae-Woong;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.26-36
    • /
    • 2008
  • Due to the differential and low voltage swing, Low Voltage Differential Signaling(LVDS) has been widely used for high speed data transmission with low power consumption. This paper proposes new LVDS I/O interface circuits for more than 1.3 Gb/s operation. The LVDS receiver proposed in this paper utilizes a sense amp for the pre-amp instead of a conventional differential pre-amp. The proposed LVDS allows more than 1.3 Gb/s transmission speed with significantly reduced driver output voltage. Also, in order to further improve the power consumption and noise performance, this paper introduces an inductance impedance matching technique which can eliminate the termination resistor. A new form of unfolded impedance matching method has been developed to accomplish the impedance matching for LVDS receivers with a sense amplifier as well as with a differential amplifier. The proposed LVDS I/O circuits have been extensively simulated using HSPICE based on 0.35um TSMC CMOS technology. The simulation results show improved power gain and transmission rate by ${\sim}12%$ and ${\sim}18%$, respectively.

Generation of Floor Response Spectra including Equipment-Structure Interaction in Frequency Domain (진동수 영역에서 기기-구조물 상호작용을 고려한 층응답스펙트럼의 작성)

  • Choi, Dong-Ho;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.13-19
    • /
    • 2005
  • Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plants are usually generated without considering dynamic interaction between main structure and subsystem. This study describes the analytic method in which equipment response spectra can be obtained through dynamic analysis considering equipment-structure Interaction(ESI). In this method, dynamic response of the equipment by this method is based on a dynamic substructure method in which the equipment-structure system is partitioned into the single-degree-ol-freedom system(SDOF) representing the equipment and the equipment support impedance representing the dynamic charactenstics of the structure ai the equipment support. A family of equipment response spectra is developed by applying this method to calculate the maximum responses of a family of SDOF equipment systems with wide banded equipment frequency, damping ratio, and mass. The method is validated by comparing the floor response spectrum from this method with the floor response spectrum generated from the rigorous analysis including equipments on the containment building of a prototypical nuclear power plant. in order to Investigate ESI effect in the response of equipment, response values from the method and the conventional approach without considering ESI are compared for the equipment having the mass less than 1% of the total structural mass. Response spectra from the method showed lower spectral amplitudes than those of the conventional floor response spectra around controlling frequencies.

A study on the design of a trumpet horn for automobiles based on acoustic reactance at the horn throat (혼 입구에서의 음향 리액턴스에 근거한 자동차용 트럼펫 혼의 설계 연구)

  • Junsu Lee;Woongji Kim;Daehyun Kim;Dongwook Yoo;Wonkyu Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • A car horn serves a crucial safety role as a means of communication between drivers and a part that alerts pedestrians in advance. While previous studies have utilized finite element method and electric circuit model to simulate and analyze characteristics of the car horns, there remains a lack of research on design methods of a trumpet horn. This paper presents a design approach that predicts the operating frequency based on the acoustic reactance at the throat of the horn, once the vibrating part is determined. We deal with a horn combining both an exponential horn and a waveguide in the acoustic section, and confirm that the acoustic reactance at the horn throat measured by impedance tube experiment agrees well compared with the numerical result obtained using the finite element method. The resonance frequency of the car horn is predicted using the COMSOL Multiphysics finite element numerical analysis model, and the proposed design method is validated by measuring the operating frequency of the designed horn in a sound pressure experiment. As a result, the resonance measured in a semi-anechoic chamber environment by applying a DC voltage of 12 [V] excluding the holder occurs accurately within a few [Hz] of the design operating frequency. This paper discuss the design method of a trumpet horn from the perspective of the horn's acoustic reactance, and is expected to be useful for designing horn systems.

Fluoroethylene Carbonate Addition Effect on Electrochemical Properties of Mixed Carbonate-based Organic Electrolyte Solution for a Capacitor

  • Kim, Mingyeong;Kim, Ick-Jun;Yang, Sunhye;Kim, Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.466-470
    • /
    • 2014
  • In this paper, organic solvent electrolytes were prepared by a mixture of propylene carbonate (PC), dimethyl carbonate (DMC), tetraethylammonium tetrafluoroborate ($TEABF_4$)s to evaluate the ionic properties of propylene carbonate (PC)/dimethyl carbonate (DMC) mixtures as solvents for a capacitor application, in view of improving the electrochemical performances. The bulk resistance and interfacial resistance of the mixture electrolytes were investigated using an AC impedance method. The morphology of carbon-based electrodes which were contained in different electrolytes was analyzed by scanning electron microscopy (SEM) method. From the experimental results, by increasing the FEC content, capacitance of electrodes was increased, and the interfacial resistance was decreased. In particular, by a content of 2 vol % FEC in 0.2 M $TEABF_4$ PC/DMC solvent, the electrolyte showed the superior capacitance. However, when FEC content exceeds 2 vol %, the capacitance was decreased and the interfacial resistance was increased.

Improvement on the Laminated Busbar of NPC Three-Level Inverters based on a Supersymmetric Mirror Circulation 3D Cubical Thermal Model

  • He, Feng-You;Xu, Shi-Zhou;Geng, Cheng-Fei
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2085-2098
    • /
    • 2016
  • Laminated busbars with a low stray inductance are widely used in NPC three-level inverters, even though some of them have poor performances in heat equilibrium and overvoltage suppression. Therefore, a theoretical method is in need to establish an accurate mathematical model of laminated busbars and to calculate the impedance and stray inductance of each commutation loop to improve the heat equilibrium and overvoltage suppression performance. Firstly, an equivalent circuit of a NPC three-level inverter laminated busbar was built with an analysis of the commutation processes. Secondly, on the basis of a 3D (three dimensional) cubical thermal model and mirror circulation theory, a supersymmetric mirror circulation 3D cubical thermal model was built. Based on this, the laminated busbar was decomposed in 3D space to calculate the equivalent resistance and stray inductance in each commutation loop. Finally, the model and analysis results were put into a busbar design, simulation and experiments, whose results demonstrate the accuracy and feasibility of the proposed method.

A Study on the Fault Discrimination and Location Algorithm in Underground Transmission Systems Using Wavelet Transform and Fuzzy Inference (지중송전계통에서 Wavelet 변환과 퍼지추론을 이용한 고장종류판별 및 고장점 추정에 관한 연구)

  • Park, Jae-Hong;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.116-122
    • /
    • 2006
  • The underground transmission lines is continuously expanded in power systems. Therefore the fault of underground transmission lines are increased every year because of the complication of systems. However the studies dealing with fault location in the case of the underground transmission lines are rarely reported except for few papers using traveling wave method and calculating underground cable impedance. This paper describes the algorithm using fuzzy system and travelling wave method in the underground transmission line. Fuzzy inference is used for fault discrimination. To organize fuzzy algorithm, it is important to select target data reflecting various underground transmission line transient states. These data are made of voltage and average of RMS value on zero sequence current within one cycle after fault occurrence. Travelling wave based on wavelet transform is used for fault location. In this paper, a variety of underground transmission line transient states are simulated by EMTP/ATPDraw and Matlab. The input which is used to fault location algorithm are Detail 1(D1) coefficients of differential current. D1 coefficients are obtained by wavelet transform. As a result of applying the fuzzy inference and travelling wave based on wavelet transform, fault discrimination is correctly distinguished within 1/2 cycle after fault occurrence and fault location is comparatively correct.

An Analysis of Arbitrarily Shaped Microstrip Antennas Using Transmission - Line Matrix Representation and Moment Methods (전송선로의 매트릭스 표현법과 모멘트법을 이용한 임의 형태를 갖는 마이크로스트립 안테나의 해석)

  • 조원서;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.2
    • /
    • pp.11-18
    • /
    • 1991
  • In this paper, the analysis of arbitrarily shaped microstrip antennas is described. The analysis method is based on the transmission - line matrix representation for the interior problem and the moment method for the problem along the peripheries of the patch. Using this method, the input impedance and other antenna parameters are calculated and compared with experimental results for a circular and an equilateral triangular microstrip antenna. For all of the results, theoretical and expreimental results are in good agreement and the validity of the method is confirmed. This analysis can also be used to analyze microstrip antennas with shorting pins.

  • PDF