• Title/Summary/Keyword: impedance tube

Search Result 140, Processing Time 0.023 seconds

INSERTION LOSS MEASUREMENT OF SILENCERS BY DOUBLE PAIR MICROPHONE TECHNIQUE

  • Jung, S.S.;Pu, Y.C.;Kim, M.G.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.704-709
    • /
    • 1994
  • The insertion loss is the measured change in power flux at a specified receiver, when the acoustic transmission path between it and the source is modified by the insertion of silencer element. Such measurements have clear and valid physical meaning particularly if the source impedance remains while the transmission path is altered. When the invarient condition is satisfied, the insertion loss is given by the ratio of the acoustic pressure in upstream to that in downstream of the silencer, and that of the particle velocity. The measurement is consisted of using an adaptation of the two microphone method to obtain the complex amplitude of the sound in upstream tube as well as in downstream tube of the silencer. Examples of the data, reduced and presented in terms of the pressure ratio and particle speed ratio, are compared with the theoretical calculations.

  • PDF

Platinum and carbon nano tube addition in carbon black counter electrode for dye-sensitized solar cells

  • Lee, Su Young;Kim, Sang Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.229-230
    • /
    • 2012
  • Platinum (Pt) has been commonly used as a counter electrode material in dye-sensitized solar cells, because it has high catalytic activity and electric conductivity as well as chemical inertness with iodide electrolyte. However, Pt is too expensive to be commercialized. Therefore, in the present study, carbon black counter electrode with Pt and carbon nano tube (CNT) was investigated. The power conversion efficiency with Pt added carbon black electrode was lower than hat of pure Pt electrode which was 6.47 %. By adding 3 wt% Pt to the carbon black counter electrode, the power conversion efficiency was maximized at 5.88 %. On them, additional adding of 1 wt % CNT, the power conversion efficiency (${\eta}$)wasincreasedupto6.21%. The reason of power conversion efficiency improvement with a proper amount of Pt and CNT was examined by comparing the impedance properties measured using EIS.

  • PDF

Super Wide-Band AM Modulator (초광대역AM변조기)

  • 이충웅;고병준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.4
    • /
    • pp.1-6
    • /
    • 1972
  • A super widely amplitude modulating AM modulator system, utilizing the impedance trasformation characteristics of transmission line is presented. The analyses and oscillograms obtained from the AM modulator systems using VHF tube, FET or VVC diode as an active element are added to verify the principle of the system.

  • PDF

A SPICE Modeling and Simulation of Electrodeless fluorescent lamp Endura (SPICE를 이용한 무전극 램프의 모델링 및 시뮬레이션)

  • 박석인;한수빈;정봉만;유승원;장우진
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.19-21
    • /
    • 2002
  • Electroded lamps operated at a high enough frequency can usually be modeled for the purpose of ballast design, as a resistor. Electrodeless fluorescent lamps include other components such as the arc tube's inductance. But that's impedance is small and so will be neglected in this paper. So, electrodeless fluorescent lamps is modeled as a resistor. A SPICE compatible model was developed for an electrodeless fluorescent lamp(OSRAM SYLVANIA ICETRON/ENDURA 150W).

  • PDF

Sound Absorption Measurement by Using Micro-Flown Velocity Sensor (Mciro-flown 속도센서를 이용한 흡음률 측정)

  • 정성수;조문재;김용태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.692-693
    • /
    • 2004
  • We introduce a new velocity sensor, micro-flown sensor, which was developed by H-E de Bree. The sound absorption coefficients of a fiber material with the conventional pressure microphones and the micro-flown sensors were measured and compared. The experimental results show that both sensors could be well applied to measure the sound absorption coefficient but the pressure sensor was rather stable than micro-flown sensor

  • PDF

Capacitively Coupled Radio Frequency Discharge System for Excitation of Gas Laser (기체레이저의 여기를 위한 용량결합고주파(ccrf) 방전시스템)

  • Choi, Sang-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • The ccrf-discharge has in comparison with the hollow-cathode discharge and DC-discharge some advantages: Simple design of the tube and homogeneous plasma. The ccrf-discharge was researched with the goal, to use on the excitation of the gas laser. In this work a rf-exciting system was planned and developed. With it a homogeneous discharge was produced in the cw operation. To supply the rf-power with the frequency 13.56[MHz] effectively in the discharge, laser tube were used with inner diameter of 5[mm] and the specially developed rf-electrodes. A matching circuit was composed also. Thereby the impedance of the discharge tube was adjusted to the 50[$\Omega$] output resistance of the rf-source.

Computation of the Current Limiting Behavior of BSCCO-2212 High-Temperature Superconducting Tube with Shunt Coils

  • Kim, H.M.;Park, K.B.;Lee, B.W.;Oh, I.;Sim, J.;Hyun, O.B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.22-25
    • /
    • 2006
  • This paper deals with the computation of the current limiting behavior of high-temperature superconducting (HTS) modules for the superconducting fault current limiter (SFCL). The SFCL module consists of a monofilar type BSCCO-2212 tube and a shunt coil made of copper or brass. The shunt coil is connected to the monofilar superconducting tube in parallel. Through analysis of the quench behavior of the monofilar component with shunt coils, it is achieved to drive an equivalent circuit equation from the experimental circuit structure. In order to analyze the quench behavior of the SFCL module, we derived a partial differential equation technique. Inductance of the monofilar component and the impedance of the shunt coil are calculated by Bio-Savart and Ohm's formula, respectively. We computed the quench behavior using the calculated values, and compared the results with experimental results for the quench characteristics of a component. The results of computation and test agreed well each other, and it was concluded that the analytic result could be applied effectively to design of the distribution-level SFCL system.

Effect of Graphite Intercalation Compound on the Sound Absorption Coefficient and Sound Transmission Loss of Epoxy Composites (그라파이트 인터칼레이션 컴파운드가 에폭시 복합재료의 흡·차음성에 미치는 영향)

  • Lee, Byung-Chan;Park, Gyu-Dae;Choi, Sung-Kyu;Kim, Sung-Ryong
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.389-394
    • /
    • 2015
  • The sound absorption coefficient and sound transmission loss of graphite intercalation compound (GIC) included epoxy composites were investigated. Epoxy resin was infused into the expanded GIC and the impedance tube method was employed to measure the sound absorption coefficient and sound transmission loss. Scanning electron microscopy photographs showed uniform distribution of the GIC in the epoxy matrix. The surface density of epoxy/GIC (20 wt%) composites decreased about 56% compared to that of pure epoxy. The sound absorption coefficient of composites increased about 3 times at the frequency range of 500~1000 Hz compared to the pure epoxy. The sound transmission loss of composites decreased with increasing the GIC content and it is attributed to the increase of pores in the composites.

Experimental Study of Characteristics of Three-Ring Impedance Meter and Dependence of Characteristics on Electric Conductivity of Fluids (3-ring 임피던스미터의 유체 전기 전도도 독립성에 대한 실험적 연구)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1027-1033
    • /
    • 2010
  • A two-phase (gas-liquid) flow is a common phenomenon in fluidic systems, e.g., fluidic systems in the electro-magnetic or nuclear power generation industry and in the steel industry. The measurement of a two-phase flow is important for guaranteeing the safety of the system and for achieving the desired performance. The measurement of the void fraction, which is one of the parameters of the two-phase flow that determines the pressure drop and heat transfer coefficient, is very important. The time resolution achieved by employing the impedance method that can be used to calculate the void fraction from the impedance of the fluid is high because the electric characteristics are taken into account. Therefore, this method can be employed to accurately measure the void fraction without distortion of flow in real time by placing electrodes on the walls of the tubes. Coney analytically studied a ring-type impedance meter, which can be employed in a circular tube. The aim of this study is to experimentally verify the robustness of a three-ring impedance meter to variations in the electric conductivity of the fluid; this robustness was suggested by Coney but was not experimentally verified.