• Title/Summary/Keyword: impedance field method

Search Result 202, Processing Time 0.024 seconds

The Ground Impedance Modeling using pattern Search Method for Neutral Hormonic Analysis (Pattern Search 법을 이용한 중성선 고조파 해석용 접지 임피던스 모델링)

  • 백승현;김경철;최종기;이일무;백남웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.181-187
    • /
    • 2004
  • With the proliferation of nonlinear loads, high neutral harmonic currents in three-phase four-wire distribution system have been observed. It has been known that the ground impedance has an effect on the neutral currents of a system which operates with harmonics present. On-site measurements of harmonic currents and voltages according to the fall-of-potential method under case study system were made and the ground impedance modeling using the pattern search method for the harmonic analysis was developed The ground impedance model obtained by the proposed method was compared with the frequency characteristics by field tests and has shown appropriate results, and would be applicable to evaluate the harmonic and transient response characteristics of the ground system.

Visualization of Sound Field of Plate-Cavity Coupled System by Experimental Method (실험적 방법에 의한 평판-공동 연성계의 음장 가시화)

  • 김시문;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.662-668
    • /
    • 1997
  • Since the structural impedance is much greater than that of medium in the most cases, we often assume that the structure is rigid and that the structural vibration is independent of medium, i.e. we usually calculate the vibration of the structure first, and then obtain the radiation sound from it. This assumption is no longer satisfied when the structural stiffness is small or the fluid impedance is comparable to it. This situation often happens in underwater acoustics. Although many researchers have studied about structural-fluid coupling, we have difficulties in solving the problem analytically. Therefore the numerical method using powerful computation leads us to obtain the various coupling problem. To understand the physical coupling phenomena, visualization of sound field by a geometrically simple system(plate-cavity coupled system) is performed experimentally. Acoustic holographic method is used to estimate sound field.

  • PDF

Analysis of the Frequency Dependent Characteristics of Ground Impedance of a Ground Rod (봉상접지전극의 접지임피던스의 주파수의존성의 분석)

  • 이복희;엄주홍
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.426-432
    • /
    • 2004
  • This paper presents a systematic approach of measurement, modeling and analysis of grounding system impedance in the field of lightning protection system and intelligent power equipments. The measurement and analysis system of ground impedance is based on a computer aided technique. The magnitude and phase of ground impedance were determined by the novel measurement and analysis using the revised fall-of-potential method. The ground impedances of the ground rod of 50 m long are considerably dependent on the frequency. The ground impedance is mainly resistive in the frequency range of 3-20 kHz. At higher frequencies, the reactive components of the ground impedances are no longer negligible and the inductance of the ground rod was found to be the core factor deciding the ground impedance. Although the steady-state ground resistance of the ground rod of 50 m was less than that of the ground rod of 10 m, the ground impedances of the ground rod of 50 m over the frequency range of more than 60 kHz were much greater than those of the ground rod of 10 m. Furthermore, the equivalent circuit model based on the measured data was proposed. and the calculated results were in approximately agreement with the measured data.

Design of an Inductively Coupled Plasma Source with Consideration of Electrical Properties and its Practical Issues (전기적 특성을 고려한 ICP Source 설계)

  • Lee, S.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.176-185
    • /
    • 2009
  • The realization and the performance of ICP source are strongly affected by its electrical impedance and the electric/magnetic field distribution. The ICP source impedance is determined by the antenna impedance and the plasma one. It is preferred to keep the imaginary impedance between -100 ohm to 100 ohm, since it should be avoided the high voltage formation on the antenna and abrupt impedance variation during the thin film process. The plasma uniformity is affected by the electric and magnetic field which is formed by the antenna current and voltage. The influence of azimuthal symmetry are shown by the electromagnetic simulation and the measurement result of plasma density. The radial uniformity can be controlled by locating the concentric antennas which have different diameters. The power distribution ratio and its control method are presented in the case of parallel antenna connections.

Magneto-impedance effect of CoFeSiBNi amorphous magnetic films (CoFeSiBNi 아몰퍼스 합금의 자기-임피던스 효과)

  • Lee, Seung-Hun;Park, Byung-Kyu;Hwang, Sung-Woo;Moon, Sung
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.389-393
    • /
    • 2007
  • Soft ferromagnetic materials are very useful for many sensors using magnetic materials demanding high permeability, low coercivity and low hysteresis loss. Among them, FeCoSiBNi amorphous magnetic films show a good impedance change (about 5.01 %/Oe, at 10 MHz) by the exterinal magnetic field in this experiment. The magnetic films are produced by melt-spun method, one of the rapid solidification process. Ribbon shape wires were made from the films, and let them annealed in DC magnetic field to increase the maximum Giant Magneto Impedance ratio. Field annealing decreases the stress and changes the effective anisotropy. Thus, we can find that the impedance change (200.47 %) is improved and the fabricated magnetic wire has characteristics of good sensor element.

Signal Transmission Properties Improvement of Serial Advanced Technology Attachment Connector Using Analysis of Differential Impedance (차동 임피던스 분석을 사용한 SATA 커넥터의 신호 전달 특성 개선)

  • Yang, Jeong-Kyu;Kim, Moonjung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.47-53
    • /
    • 2013
  • In this work, signal transmission properties of SATA connector have been improved using its differential impedance calculation and its design revision to closer impedance matching. Using 3 dimensional electromagnetic field simulator, the differential mode S-parameter was calculated to investigate its signal fidelity. The differential impedance is calculated from the equation of the odd mode impedance with inductance, capacitance, mutual inductance, and mutual capacitance. The differential impedance of SATA connector was calculated to be $107.3{\Omega}$ and did not meet the design specification with $100{\Omega}{\pm}5%$. In order to achieve its impedance range and improve its signal transmission properties, SATA connector's design has been revised with two different directions and analyzed through the calculation of differential impedance, differential reflection loss, and differential insertion loss.

Thermal Model for Power Converters Based on Thermal Impedance

  • Xu, Yang;Chen, Hao;Lv, Sen;Huang, Feifei;Hu, Zhentao
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1080-1089
    • /
    • 2013
  • In this paper, the superposition principle of a heat sink temperature rise is verified based on the mathematical model of a plate-fin heat sink with two mounted heat sources. According to this, the distributed coupling thermal impedance matrix for a heat sink with multiple devices is present, and the equations for calculating the device transient junction temperatures are given. Then methods to extract the heat sink thermal impedance matrix and to measure the Epoxy Molding Compound (EMC) surface temperature of the power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) instead of the junction temperature or device case temperature are proposed. The new thermal impedance model for the power converters in Switched Reluctance Motor (SRM) drivers is implemented in MATLAB/Simulink. The obtained simulation results are validated with experimental results. Compared with the Finite Element Method (FEM) thermal model and the traditional thermal impedance model, the proposed thermal model can provide a high simulation speed with a high accuracy. Finally, the temperature rise distributions of a power converter with two control strategies, the maximum junction temperature rise, the transient temperature rise characteristics, and the thermal coupling effect are discussed.

Design and Analysis of UWB Elliptical Slot Antenna (UWB 타원형 슬롯 안테나의 설계 및 해석)

  • Jang, Joon-Won;Choi, Kyung;Hwang, Hee-Yong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.419-422
    • /
    • 2007
  • This paper, designed UWB elliptical slot antenna and analysis based on the distribution of the electromagnetic fields pattern and resonant mode of designed antenna is presented. Designed antenna is fabricated on FR4 substrate with thickness of 1.524mm and relative dielectric constant 4.4. The measured bandwidth of $3.6GHz{\sim}20GHz$ for VSWR<2. Through the field pattern and resonant mode analysis that the slot antenna operates on a series of the multi-pole radiation based on TE modes matched to system impedance. And the perfect magnetic wall is along the axis of symmetry on the y-z plane. This result gives us an easier method to design the similar antennas, which is the impedance matching to the system impedance after once constructing a proper structure with a series of multi-mode resonances.

  • PDF

Numerical Computation of the Backscattering Coefficients of Rice Fields Using the Impedance Boundary Condition, Moment Method and Monte Carlo Method (임피던스 경계 조건, 모멘트 법과 몬테 카를로 방법을 이용한 논의 산란계수 수치적 계산과 측정 데이터와의 비교)

  • Hong, Jin-Young;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.819-827
    • /
    • 2007
  • A numerical algorithm for estimating precise backscattering coefficients of rice fields is proposed and its accuracy is verified in this paper. After a bunch of rice plants above water surface is modeled with a bunch of randomly oriented lossy dielectric bodies above an impedance surface and the equivalent volume currents of the lossy dielectrics are computed using the moment method. Then, the scattered fields of a rice field with many bunches are computed with a Monte Carlo method, and consequently the backscattering coefficient of the rice field is computed for various incidence angles and polarizations. Finally, the backscattering coefficient of a rice field is measured at 1.85 GHz using an R-band scatterometer system, and these experimental data are used to verify the numerical algorithm proposed in this paper. It is found that the numerical computation results agree well with the measurement data.

Radiation Power Control by Means of Absorptive Material Arrangement in an Enclosure (흡음재 배치를 통한 닫힌 공간에서의 소음원 방사 파워 제어)

  • 조성호;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.688-691
    • /
    • 2004
  • We have studied the possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work (1,2), the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. The possibility of total acoustic potential energy reduction by acoustic source power control is examined in an acoustically small cavity. Using acoustic energy balance equation, the relation between global noise control performance and absorptive material's arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent's distribution and impedance.

  • PDF