• Title/Summary/Keyword: impedance characteristics

Search Result 1,741, Processing Time 0.03 seconds

Fault Current Limiting and Hysteresys Characteristics of a SFCL using Magnetic Coupling of Two Coils on the Iron Core with an Air-Gap (공극이 도입된 철심에 코일의 자기결합을 이용한 초전도한류기의 고장전류 제한 및 히스테리시스 특성)

  • Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • In this paper, the fault current limiting and the hysteresys characteristics of a superconducting fault current limiter (SFCL) using magnetic coupling of two coils on the iron core with an air-gap were analyzed. The introduction of the air-gap in the SFCL with magnetically coupled two coils can suppress the saturation of the iron-core and, on the other hand, make the limiting impedance of the SFCL decreased, which results from the increase of the exciting current. To analyze the effect of the aig-gap on the fault current limiting characteristics of the SFCL, the hysteresys curves of the iron core comprising the SFCL were derived from the short-circuit experiment and the variation in the voltage-current trace of the SFCL during the fault period was analyzed. Through the comparison with the current limiting characteristics of the SFCL without air-gap, the air-gap could be confirmed to contribute to the suppression of the iron core's saturation through the increase of the SFCL's burden from the short-circuit current.

Optical Characteristics of EEFL (External Electrode Fluorescence Lamp) for Large Size BLU (대화면 BLU용 EEFL의 광학적 특성)

  • Choi, Yong-Sung;Lee, Kyung-Sup;Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.74-76
    • /
    • 2006
  • An external electrode fluorescent lamp (EEFL) has an advantage of a long lifetime in the ear1y stages of the study on plasma discharge, interest in the lamp continues. Researches on the operation of external electrode fluorescent lamps have focused mainly on its use of a type of high frequency (MHz). By performing high brightness using a square wave operation method with the low frequency below 100kHz, which is applied to a narrowed tube type lamp that has several mm of lamp diameter, EEFL presented the possibility of using it as a light source for back-lights. However, because EEFL generates plasma using wall charges, which considers the impedance characteristics of glass based on the structural principle in discharge, it can be significant1y affected by frequency. Thus, this study verified the change in the characteristics of electromagnetic fields according to the change in frequency through a Maxwell's electromagnetic field simulation and examined the relationship between the change in the EEFL frequency and brightness by measuring the optical characteristics. In addition, the characteristics of the transformation of energy orbits were verified by investigating the characteristics of the wavelength according to the change in frequency through the OES.

  • PDF

Brightness Characteristics by Applied Frequency for External Electrode Fluorescent Lamp (외부전극형 형광램프의 입력 주파수에 따른 휘도 특성)

  • Choi, Yong-Sung;Cha, Jae-Chea;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.75-78
    • /
    • 2006
  • An external electrode fluorescent lamps (EEFLs) have the advantage of a long lifetime in the early stages of the study on plasma discharge, interest in the lamp continues. Studies on the operation of external electrode fluorescent lamps have focused mainlyon its use of a type of high frequency (MHz). By performing high brightness using a square wave operation method with the low frequency below 100kHz, which is applied to a narrowed tube type lamp that has several mm of lamp diameter, an EEFL presented the possibility of using it as a light source for backlights. However, because an EEFL generates plasma using wall charges, which considers the impedance characteristics of glass based on the structural principle in discharge, it can be significantly affected by frequency. Thus, this study verifies the change in the characteristics of electromagnetic fields according to the change in frequency through a Maxwell's electromagnetic field simulation and examines the relationship between the change in the EEFL frequency and brightness by measuring the optical. characteristics. In addition, the characteristics of the transformation of energy orbits were verified by investigating the characteristics of the wavelength according to the change in frequency through the OES.

  • PDF

A Technique for Calculating the Hybrid Mode Despersion Characteristics of Microstrip Lines using a Planar Waveguide Model (Planar Waveguide 모델을 이용한 마이크로 스트립선로의 하이브리드 모드 분산특성 계산)

  • 윤현보;고성선;백낙준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.1
    • /
    • pp.36-49
    • /
    • 1987
  • A planar waveguide model is presented for calculating dispersion characteristics of the normalized phase velocity and characteristic impedance with the frequency dependent effective dielectric constand and effective width in microstrip lines of the hybrid mode. Eeff(f) and Weff(f) are applied to a planar waveguide model by using an empirical relations and formula designed for CAD purposes as a function of frequency. A wide range of relative dielectric constants and the strip $h_{width}$strate height(W/h ratios), $0.5$\leq$W/h\leq2.5$ are used. These results are compared with static value, spectral domain analysis, and empirical results. As the result of a computer simulation, in the case of using a planar waveguide model, the frequency dependent normalized phase velocity is more closely approached to 1/ and characteristic impedance is more increased than the other method that has already been presented as the increasing of the frequency. And, the case of applying Eeff(f) designed for the purpose of CAD to this proposed model is show in better result than the case of using a empirical relations.

  • PDF

Design of a Broadband Quasi-Yagi Antenna fed by a Microstrip with a Shorted End (단락종단된 마이크로스트립으로 급전되는 광대역 quasi-Yagi 안테나 설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.70-73
    • /
    • 2012
  • In this paper, we introduce a design method for a quasi-Yagi antenna (QYA) with broadband characteristics of an impedance bandwidth ratio of > 2 : 1 and a gain of > 4 dBi. The QYA is fed by a microstrip line fabricated on a coplanar strip line and it consists of 3 elements; a planar dipole, a nearby director close to the dipole, and a ground plane reflector. By placing a rectangular patch-type director with large width near to the dipole driver, broadband characteristics are achieved. An optimized 3-element QYA for operation over 1.6-3.5 GHz (bandwidth ratio 2.2 : 1) is fabricated on an FR4 substrate with a size of $90mm{\times}90mm$ and tested experimentally. The results show an impedance bandwidth of 1.56-3.74 GHz (bandwidth ratio 2.4 : 1) for VSWR < 2, a peak gain of 4.41-6.53 dBi, and a front-to-back ratio (FBR) > 13.6 dB within the bandwidth.

  • PDF

Design of Voltage Controlled Oscillator with High Reliability and Low Phase Noise (고신뢰성과 저위상잡음을 갖는 전압제어 발진기의 설계 및 제작)

  • Ryu Keun-Kwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.13-19
    • /
    • 2004
  • The VCO(Voltage Controlled Oscillator) with low phase noise and high reliability is implemented using nonlinear design, and its phase noise characteristics are compared with that of Lesson's equation. The microstripline coupled with dielectric resonator is realized as a high impedance inverter to improve the phase noise, and the qualify factor of resonator circuit can be transferred to active device with the enhanced the loaded quality factor. The worst case and part stress analyses are achieved to obtain the high reliability of VCO. The developed VCO has the oscillating tuning factor of 0.56MHz/V for the control voltage range of 0$\~$12V This VCO requires the DC power of 160mW. The phase noise characteristics exhibit good performances of -96.51dBc/Hz @ 10KHz and -116.3dBc/Hz @ 100KHz, respectively. And, the output power of 7.33 dBm is measured.

  • PDF

Electrochemical Characteristics of $LaNi_5$ Electrode Fabricated by Ni and Cu Electroless Plating Techniques (Ni 및 Cu무전해 도금법에 의해 제조한 $LaNi_5$ 전극의 전기화학적 특성)

  • Yi Su Youl;Lee Jae-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.121-126
    • /
    • 2000
  • The effect of electroless Ni and Cu plating on $LaNi_5$, $AB_5$ type hydrogen storage alloy was investigated by the various electrochemical techniques such as constant current charge-discharge test, cyclic voltammeoy, and a.c. impedance spectroscopy. Scanning electron microscopy and X-ray diffraction test were conducted for phenomenological logical analyses. Cyclic Voltammetry results show that activation characteristics, cycle life and reaction ,rate were improved through electroless Ni and Cu plating. Compared with bare $LaNi_5$ the charge transfer resistance of electrode was greatly reduced as charge-discharge cycle increases. Therefore, electroless Ni and Cu plating on $LaNi_5$ alloy tends to accelerate the early activation, increasing the cyclic lift of electrode.

The Characteristics Analysis of Low Profile Meander 2-Layer Monopole Antenna (소형 미앤더 2-층 모노폴 안테나의 특성분석)

  • Jang, Yong-Woong;Lee, Sang-Woo;Shin, Ho-Sub
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.934-941
    • /
    • 2014
  • In this paper, we present a low profile 2-layered meander built-in monopole antenna for portable RFID reader using FDTD(Finite Difference Time Domain) method. The input impedance, return loss, and VSWR in the frequency domain are calculated by Fourier transforming the time domain results. The double meander 2-layer structure is used to enhance the impedance matching and increase the antenna gain. The measured bandwidth of the antenna is 0.895 GHz ~ 0.930 GHz for a S11 of less than -10dB. The measured peak gain of proposed low profile RFID built-in antenna is 2.3 dBi. And the proposed built-in antenna for portable RFID reader can offers relatively wide-bandwidth and high-gain characteristics, in respectively. Experimental data for the return loss and the gain of the antenna are also presented, and they are relatively in good agreement with the FDTD results. This antenna can be also applied to mobile communication field, energy fields, RFID, and home-network operations, broadcasting, and other low profile mobile systems.

A Design of Low-Power Wideband Bipolar Current Conveyor (CCII) and Its Application to Universal Instrumentation Amplifiers (저전력 광대역 바이폴라 전류 콘베이어(CCII)와 이를 이용한 유니버셜 계측 증폭기의 설계)

    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.143-152
    • /
    • 2004
  • A novel low-power wideband bipolar second-generation current conveyors(CCIIs) and its application to universal instrumentation amplifier(UIA) were proposed. The CCII for accuracy voltage or current transfer characteristics and low current input impedance adopted adaptive current bias circuit into conventional class Ab CCII. The UIA consists of only two CCIIs and four resistors. Three instrumentation function of the UIA can be realized by selection of input signals and resistors. The simulation results show that the CCII has input impedance of 2.0$\Omega$ and the voltage gain of 60㏈ for frequency range from 0 to 50KHz when used as a voltage amplifier. The CCII has also good characteristics of current follower for current range from -100㎃ to +100㎃. The simulation results show that the UIA has three instrumentation amplifier functions without resistor matching. The UIA has the voltage gain of 40㏈ for frequency range from 0 to 100KHz when used as a fully-differential instrumentation amplifier. The power dissipations of the CCII and the UIA are 0.75㎽ and 1.5㎽ at supply voltage of $\pm$2.5V, respectively.

Analysis and comparison of textile electrode's electrical characteristics in several shapes for biopotential signals (생체 신호 측정을 위한 섬유전극의 형태에 따른 전기적 특성 분석 및 비교)

  • Lee, Young-Jae;Lee, Kang-Hwi;Lee, Jeong-Whan;Kang, Da-Hye;Cho, Ha-Kyung;Cho, Hyun-Seung;Lee, Joo-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.371-372
    • /
    • 2008
  • Many kinds of electrodes have been developed in various forms and shapes for measurement of bio potential signal. Textile electrode has benefit of collect long tenn data monitoring because of it is non-consciousness, convenient and do not occur skin irritation. However, It is very difficult to acquire available data due to high impedance of electrode and unstable skin-electrode contact which generate motion artifact. Also snap button which usually used as mediator between textile and measurement device cause change of electrical characteristics. In this paper, we inflated textile electrode to stabilize contact and add conductive silver paste between textile and snap button to improve conductance. To compare the performance of two methods, flat or inflated and add conductive paste or not, four types of electrodes are tested on each impedance and SNR by ECG measurement. In result, the first type electrode which flat and non-conductive paste showed the worst performance and the last type electrode which is inflated shape and contain conductive paste show the best performance.

  • PDF