• Title/Summary/Keyword: impedance characteristics

Search Result 1,741, Processing Time 0.036 seconds

Maximizing TPBs through Ni-self-exsolution on GDC based composite anode in solid oxide fuel cells

  • Tan, Je-Wan;Lee, Dae-Hui;Kim, Bo-Gyeong;Kim, Ju-Seon;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.1-402.1
    • /
    • 2016
  • The performance of solid oxide fuel cells (SOFCs) is directly related to the electrocatalytic activity of composite electrodes in which triple phase boundaries (TPBs) of metallic catalyst, oxygen ion conducting support, and gas should be three-dimensionally maximized. The distribution morphology of catalytic nanoparticle dispersed on external surfaces is of key importance for maximized TPBs. Herein in situ grown nickel nanoparticle onto the surface of fluorite oxide is demonstrated employing gadolium-nickel co-doped ceria ($Gd0.2-xNixCe0.8O2-{\delta}$, GNDC) by reductive annealing. GNDC powders were synthesized via a Pechini-type sol-gel process while maximum doping ratio of Ni into the cerium oxide was defined by X-ray diffraction. Subsequently, NiO-GNDC composite were screen printed on the both sides of yttrium-stabilized zirconia (YSZ) pellet to fabricate the symmetrical half cells. Electrochemical impedance spectroscopy (EIS) showed that the polarization resistance was decreased when it was compared to conventional Ni-GDC anode and this effect became greater at lower temperature. Ex situ microstructural analysis using scanning electron microscopy after the reductive annealing exhibited the exsolution of Ni nanoparticles on the fluorite phases. The influence of Ni contents in GNDC on polarization characteristics of anodes were examined by EIS under H2/H2O atmosphere. Finally, the addition of optimized GNDC into the anode functional layer (AFL) dramatically enhanced cell performance of anode-supported coin cells.

  • PDF

Comparative simulation of microwave probes for plasma density measurement and its application

  • Kim, Dae-Ung;Yu, Sin-Jae;Kim, Si-Jun;Lee, Jang-Jae;Kim, Gwang-Gi;Lee, Yeong-Seok;Yeom, Hui-Jung;Lee, Ba-Da;Kim, Jeong-Hyeong;O, Wang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.185.2-185.2
    • /
    • 2016
  • The plasma density is an essential plasma parameter describing plasma physics. Furthermore, it affects the throughput and uniformity of plasma processing (etching, deposition, ashing, etc). Therefore, a novel technique for plasma density measurement has been attracting considerable attention. Microwave probe is a promising diagnostic technique. Various type of cutoff, hairpin, impedance, transmission, and absorption probes have been developed and investigated. Recently, based on the basic type of probes, modified flat probe (curling and multipole probes), have been developing for in situ processing plasma monitoring. There is a need for comparative study between the probes. It can give some hints on choosing the reliable probe and application of the probes. In this presentation, we make attempt of numerical study of different kinds of microwave probes. Characteristics of frequency spectrum from probes were analyzed by using three-dimensional electromagnetic simulation. The plasma density, obtained from the spectrum, was compared with simulation input plasma density. The different microwave probe behavior with changes of plasma density, sheath and pressure were found. To confirm the result experimentally, we performed the comparative experiment between cutoff and hairpin probes. The sheath and collision effects are corrected for each probe. The results were reasonably interpreted based on the above simulation.

  • PDF

Performance Comparison Between Stationary PEMFC MEA and Automobile MEA under Pure Hydrogen Supply Condition (순수 수소 공급조건에서 정치용 PEMFC MEA와 차량용 MEA 성능비교)

  • Oh, Sohyeong;Lee, Mihwa;Lee, Hakju;Kim, Wookwon;Park, Jeong-Woo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.469-473
    • /
    • 2018
  • When pure hydrogen was supplied to the stationary PEMFC generally using the reforming gas, its characteristics were compared with the vehicle PEMFC. The effect of varying the amount of hydrogen supply to the anode on the overall performance was compared. The variation of hydrogen supply in the range of 1.0~1.7 excess (stoi.) had little effect on the OCV of stationary and vehicle MEA (Membrane and Electrode Assembly). At 0.7 V, the current density of the stationary MEA was about 16% higher than that of the vehicle MEA. I-V performance, impedance, and LSV were measured with varying relative humidity. Both OCV and electrolyte membrane resistances decreased with increasing relative humidity. The hydrogen permeability of the stationary MEA was lower than that of the vehicle MEA, showing that the durability of the stationary membrane could be higher than that of the vehicle membrane.

Electrochemical Characteristics of Surface Modified CTP Anode by H3PO4 Treatment (인산 처리된 표면 개질 음극 석탄계 피치의 전기화학적 특성)

  • Lee, Ho Yong;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.415-420
    • /
    • 2016
  • To enhance electrochemical performances of anode materials, the surface of coal tar pitch (CTP) was modified by incorporating heteroatoms through chemical treatment with phosphoric acid ($H_3PO_4$). The prepared anode materials with modified CTP was analyzed by XRD, FE-SEM and XPS. The electrochemical performances of modified CTP were investigated by constant current charge/discharge test, rate performance, cyclic voltammetry and impedance tests using the electrolyte of $LiPF_6$ dissolved in the mixed organic solvents (ethylene carbonate : dimethyl carbonate = 1 : 1 vol% + vinylene carbonate 3 wt%). The coin cell using modified CTP ($H_3PO_4/CTP$ = 3 : 100 in weight) has better initial capacity and initial efficiency (489 mAh/g, 82%) than those of other composition coin cells. Also, it was found that the capacity retention was 86% after 30 cycles and the rate capability was 87% at 2 C/0.1 C.

Effect of CH4 Concentration on the Dielectric Properties of SiOC(-H) Film Deposited by PECVD (CH4 농도 변화가 저유전 SiOC(-H) 박막의 유전특성에 미치는 효과)

  • Shin, Dong-Hee;Kim, Jong-Hoon;Lim, Dae-Soon;Kim, Chan-Bae
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.90-94
    • /
    • 2009
  • The development of low-k materials is essential for modern semiconductor processes to reduce the cross-talk, signal delay and capacitance between multiple layers. The effect of the $CH_4$ concentration on the formation of SiOC(-H) films and their dielectric characteristics were investigated. SiOC(-H) thin films were deposited on Si(100)/$SiO_2$/Ti/Pt substrates by plasma-enhanced chemical vapor deposition (PECVD) with $SiH_4$, $CO_2$ and $CH_4$ gas mixtures. After the deposition, the SiOC(-H) thin films were annealed in an Ar atmosphere using rapid thermal annealing (RTA) for 30min. The electrical properties of the SiOC(-H) films were then measured using an impedance analyzer. The dielectric constant decreased as the $CH_4$ concentration of low-k SiOC(-H) thin film increased. The decrease in the dielectric constant was explained in terms of the decrease of the ionic polarization due to the increase of the relative carbon content. The spectrum via Fourier transform infrared (FT-IR) spectroscopy showed a variety of bonding configurations, including Si-O-Si, H-Si-O, Si-$(CH_3)_2$, Si-$CH_3$ and $CH_x$ in the absorbance mode over the range from 650 to $4000\;cm^{-1}$. The results showed that dielectric properties with different $CH_4$ concentrations are closely related to the (Si-$CH_3$)/[(Si-$CH_3$)+(Si-O)] ratio.

A Study on the EM Wave Absorption Characteristics of Amorphous Metal Powder and Sendust Absorbers for RFID System (RFID 시스템용 Amorphous Metal Powder 및 Sendust 흡수체의 전파흡수 특성 연구)

  • Choi, Dong-Soo;Yoo, Gun-Suk;Choi, Dong-Han;Kim, Dong-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.159-160
    • /
    • 2010
  • In this paper, we compared the absorption abilities of AMP and Sendust EM wave absorbers for a port logistics RFID system. Firstly, we fabricated EM wave absorber samples by using each absorbing material, AMP or Sendust, and CPE (Chlorinated Polyethylene) with composition ratios 85 : 15 wt. %. Secondly, we designed the optimum EM wave absorber using the calculated material constants found from the measured input impedance of the samples. Therefore, we confirmed that imaginary factor of complex relative permeability influences absorption ability and that AMP is better absorbing material than Sendust at the frequency band of 433 MHz.

  • PDF

Design of Crooked Wire Antennas for UHF Band RFID Reader (UHF 대역 RFID 리더용 Crooked Wire 안테나 설계)

  • Choo Jae-Yul;Choo Ho-Sung;Park Ik-Mo;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.472-481
    • /
    • 2005
  • This paper reports the design of RFID reader antennas working in UHF band. The reader antennas were designed using a Pareto Genetic Algorithm(Pareto GA). Antennas were optimized to have circular polarization(CP) with less than 3 dB axial ratio, impedance matching with less than VSWR=2 within the frequency range of UHF, an adequate readable range, a restricted size(kr<2.22) considering the practical condition. After Pareto GA optimization, we selected and built the most suitable antenna design and compared the measured results to the simulations. Operating principle of the antenna was explained by investigating the amplitude and the phase of the induced current on the antenna body. We also researched the stability of the antenna with respect to the manufacturing error and studied the critical design parameters by applying the random error method on the antenna bent points.

Design of RFID Passive Tag Antennas in UHF Band (UHF 대역 수동형 RFID 태그 안테나 설계)

  • Cho Chihyun;Choo Hosung;Park Ikmo;Kim Youngkil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.872-882
    • /
    • 2005
  • In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm and the size of the tag antenna can be reduced up to kr=0.27($2 cm^2$). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.

A CPW-Fed Self-Affine Cross Shape Fractal Antenna (자기 아파인 프랙탈 구조를 이용한 CPW 급전 크로스 안테나)

  • Kim Tae-Hwan;Lee Jae-Wook;Cho Choon-Sik;Lee Yun-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.949-956
    • /
    • 2005
  • In this paper, a new CPW-fed cross shape fractal antenna having a self-affinity is presented. This novel configuration, which has anisotropic scaling symmetry, makes smaller profile characteristic compared to the fractal antenna using a self-similarity. Increase of the iteration coefficient, which leads to decrease of the fundamental resonant frequency, shows a good impedance matching condition and multi-band characteristics due to new surface current paths. The radiation patterns are similar to those of monopole antennas. In the K3 stage of iteration, the proposed antenna shows a measured maximum gain 2.27 dBi at 940 MHz. A commercially available software based on the FDTD algorithm has been used to obtain the predicted results. In addition, an RT/Duroid 5880 substrate has been employed for the experimental results.

Fabrication of Mach-Zehnder Type Traveling-Wave Ti:$LiNbO_3$ Optical Modulator and Estimation of Frequency Response (Mach-Zehnder형 진행파 Ti:$LiNbO_3$ 광변조기의 제작 및 변조응답 추정)

  • Han, Yeong-Tak;Lee, U-Jin;Go, Byeong-Guk;Lee, Byeong-Gwon;Kim, Chang-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.791-803
    • /
    • 2001
  • Mach-Zehnder type traveling-wave Ti:LiNb $O_3$ optical modulators were designed and fabricated. Optimum parameters of optical waveguides were calculated by means of the FDM. Design of CPW traveling-wave electrodes were performed by the FEM in the active region and by the CMM in the input/output section to obtain the conditions of MW effective index and impedance matching. From the measured S parameters, MW characteristics of the traveling-wane electrodes were extracted to be ${\alpha}_m$=0.05426 $\sqrt{f}$, $N_{eff}$=2.2025, and $Z_{c}$=39 ${\Omega}$. The calculated optical response R($\omega$) showed the 3 dB bandwidth of 10 GHz.z..

  • PDF