• Title/Summary/Keyword: impedance characteristics

Search Result 1,741, Processing Time 0.033 seconds

Analyses of the Output Characteristics and the Internal Impedance of Dye-sensitized Solar Cell According to the Fabrication of the Blocking Layer (Blocking layer 제작에 따른 염료감응형 태양전지 출력특성 및 내부 임피던스 분석)

  • Kim, Jin-Kyoung;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Kim, Byung-Man;Prabarkar, Prabarkar;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.85-88
    • /
    • 2012
  • DSCs are based on a dye-adsorbed porous $TiO_2$ layer as a photo electrode [1]. Under the illumination, dye molecules are excited and electrons are produced. The injected electrons in the conduction band of $TiO_2$ may recombine with the electrolyte. To obtain high performance DSCs, it is essential to retard the recombination. The charge recombination can be reduced by forming core-shell structure. In this work, we investigated the core-shell structure with $Al_2O_3$ and MgO coating layer on the porous $TiO_2$ layer. We confirmed the photovoltaic properties by I-V characteristics. The current and the efficiency was improved. In addition to, Through decrease in the width of EIS arc, which is the sum of the interfacial charge transfer resistances of both electrodes, we can be indicated that the block effect.

Absorption Characteristics of Sound Proof Wall by Scrap Aluminum and Perforated Plate (알루미늄칩과 타공판을 이용한 방음벽 충진재의 흡음특성)

  • Lee, Young-Jung;Kim, Dae-Gun;Park, Kyung-Hwa;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.382-385
    • /
    • 2009
  • Efforts to reduce noise in industrial application fields, such as automobiles, aircrafts, and plants have been gaining considerable attention while a sound proof wall to protect people from the noise has been intensively investigated by many researchers. In this study, our research group suggested creating a new sound proof wall composed of scrap aluminum chips and perforated plates in a commercial polyester sound proof wall, which was then successfully fabricated. This wall's sound absorption characteristics were measured by an impedance tube method. The sound absorption property was evaluated by measuring the Noise Reduction Coefficient (NRC) to the standard, ASTM C 423-90a. The noise reduction coefficient of the sound proof wall composed of 3.5 vol.% and 7.5 vol.% of scrap aluminum chips relatively increased to 5% and 8% compared to the commercial polyester sound proof wall. The scrap aluminum perforated plate also relatively increased to 13% compared to the commercial polyester sound proof wall.

On the selection of loads in the multi-load method for measuring in-duct source characteristics (덕트 내 음원 특성 측정을 위한 다중부하법의 부하 선택에 관한 연구)

  • Jang, Seung-Ho;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.384-388
    • /
    • 2000
  • One-port acoustic characteristics of an in-duct source can be measured by the multi-load method using an overdetermined set of open pipes with different lengths as applied loads. The input data. viz. load pressure and load impedance, are usually contaminated by measurement error in the actual measurements, which result in errors in the calculated source parameters. In this paper, the effects of the errors in the input data on the results have been studied numerically, varying the number of loads and their impedances in order to determine what combination of the loads will yield the best result. An error analysis is applied to each case of possible loads, which consist of open pipes. It is noted that, frequently, only a set of open pipes is used when applying the multi-load method to the intake or exhaust sides of internal combustion engines. A set of pipe lengths which cause the calculated results to be least sensitive to the input data error can be found when using open pipe loads. The present work is intended to produce guidelines for preparing an appropriate load set in order to obtain accurate source properties of fluid machines.

  • PDF

A Study of Hydraulic Actuator Based On Electro Servo Valve For A Walking Robot (보행 로봇을 위한 서보밸브 구동 유압 액추에이터의 특성 분석)

  • Cho, Jung San
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2016
  • This paper describes of a mathematical and real experimental analysis for a walking robot which uses servo valve driven hydraulic actuator. Recently, many researchers are developing a walking robot based on hydraulic systems for the difficult and dangerous missions such as walking in the rough terrain and carrying a heavy load. In order to design and control a walking robot, the characteristics of the hydraulic actuators in the joint through the view point of walking such as controllability and backdrivability must be analyzed. A general mathematical model was used for analysis and proceeds to position and pressure changes characteristic of the input and backdrivability experiment. The result shows the actuator is a velocity source, had a high impedance, the output stiffness is high in contact with the rigid external force. So stand above the controller and instruments that complement the design characteristics can be seen the need to apply a hydraulic actuator in walking robot.

Electrochemical Corrosion Damage Characteristics of Aluminum Alloy Materials for Marine Environment (해양환경용 알루미늄 합금 재료의 전기화학적 부식 손상 특성)

  • Kim, Sung Jin;Hwang, Eun Hye;Park, Il-Cho;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.6
    • /
    • pp.421-429
    • /
    • 2018
  • In this study, various electrochemical experiments were carried out to compare the corrosion characteristics of AA5052-O, AA5083-H321 and AA6061-T6 in seawater. The electrochemical impedance and potentiostatic polarization measurements showed that the corrosion resistance is decreased in the order of AA5052-O, AA5083-H321 and AA6061-T6, with AA5052-O being the highest resistant. This is closely associated with the property of passive film formed on three tested Al alloys. Based on the slope of Mott-Schottky plots of an n-type semiconductor, the density of oxygen vacancies in the passive film formed on the alloys was determined. This revealed that the defect density is increased in the order of AA5052-O, AA5083-H321 and AA6061-T6. Considering these facts, it is implied that the addition of Mg, Si, and Cu to the Al alloys can degrade the passivity, which is characterized by a passive film structure containing more defect sites, contributing to the decrease in corrosion resistance in seawater.

Leaky-Wave and DFB Characteristics of Optical Waveguide with Asymmetric Rectangular Grating Profile (비대칭 장방형 격자로 구성된 광 도파로의 누설 파와 DFB 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.151-156
    • /
    • 2021
  • Leakage and Bragg condition of optical waveguide with asymmetric rectangular grating profile are evaluated in detail by using novel and rigorous modal transmission-line theory (MTLT) based on eigenvalue problem. The optical waveguide composed by asymmetric rectangular grating occur leaky-wave stop-bands at Bragg conditions, and anomalies based on Rayleigh-Wood condition near Bragg conditions. Furthermore, DFB properties of the guiding structure at Bragg conditions are analyzed by applying longitudinal equivalent transmission-line with characteristic impedance of periodic grating. The numerical results show that filtering characteristics that maximize the reflected power of DFB waveguide are activated near Bragg conditions, in which leaky-wave stop-bands occur.

A fault current analysis and parallel FCL scheme on superconducting new power system (초전도(신)전력계통 고장전류 분석 및 병렬한류시스템)

  • Yoon, Jae-Young;Lee, Seung-Ryul;Kim, Jong-Yul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.49-53
    • /
    • 2006
  • This paper specifies the new power supply paradigm converting 154kV voltage level into 22.9kV class with equivalent capacity using superconducting rower facilities and analyze the fault current characteristics with and without HTS-FCL (High Temperature Superconducting-Fault Current Limiter). Superconducting new power system is the power system to which applies the 22.9kV HTS cable in parallel to HTS transformer and HTS-FCL with low-voltage and mass-capacity characteristics replacing 154kV conventional cable and transformer. The fault current of superconducting new power system will increase greatly because of the mass capacity and low impedance of HTS transformer and cable. This means that the HTS-FCL is necessary to reduce the fault current below the breaking current of circuit breaker. This paper analyze the fault current and suggests the parallel HTS-FCL scheme complementing the inherent problem of HTS-FCL, that is recovery after quenching is impossible within shorter than a few seconds.

Low Temperature Interface Modification: Electrochemical Dissolution Mechanism of Typical Iron and Nickel Base Alloys

  • Jiangwei Lu;Zhengyang Xu;Tianyu Geng
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.220-241
    • /
    • 2024
  • Due to its unique advantages, electrochemical machining (ECM) is playing an increasingly significant role in the manufacture of difficult-to-machine materials. Most of the current ECM research is conducted at room temperature, with studies on ECM in a cryogenic environment not having been reported to date. This study is focused on the electrochemical dissolution characteristics of typical iron and nickel base alloys in NaNO3 solution at low temperature (-10℃). The polarization behaviors and passive film properties were studied by various electrochemical test methods. The results indicated that a higher voltage is required for decomposition and more pronounced pitting of their structures occurs in the passive zone in a cryogenic environment. A more in-depth study of the composition and structure of the passive films by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy showed that the passive films of the alloys are modified at low temperature, and their capacitance characteristics are more prominent, which makes corrosion of the alloys more likely to occur uniformly. These modified passive films have a huge impact on the surface morphologies of the alloys, with non-uniform corrosion suppressed and an improvement in their surface finish, indicating that lowering the temperature improves the localization of ECM. Together with the cryogenic impact of electron energy state compression, the accuracy of ECM can be further improved.

Array of Slot-Sleeve Antennas for Hyperthermia Therapy

  • Park Soo-Man;Lim Yeongseog
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.126-131
    • /
    • 2005
  • To increase the efficiency of an applicator during microwave hyperthermia therapy, first, the length from the antenna end to a slot is varied to get the optimal matching of the characteristic impedance at the frequency of 2.45 GHz. Using the electric and thermal constants of biological tissue, we compose a phantom to calculate temperature increment as well as the resonance characteristics and the SAR distributions. The proposed 3-slot sleeve antenna inserted in an applicator plays an effective role in increasing the therapy size in the view of heating performance as electromagnetic energy tends to concentrate on not feed point direction but treatment area. The SAR is then used in combination with a finite difference heat transfer equation to determine the temperature distribution. Also, in order to shorten treatment time and increase therapy size, a square-array structure is suggested and analyzed.

Analyse of characteristic of Eddy current sensor using Boundary Element Method (경계요소해석을 이용한 와전류 센서의 특성 해석)

  • Yoon, Man-Sik;Choi, Duck-Su;Yang, Gyu-Chang;Lee, Hyang-Beom;Park, Seung-Han
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.697-699
    • /
    • 2002
  • In this paper, the characteristics analysis of the eddy current sensor by using boundary element method package is presented. For the boundary element analysis. Faraday, which is the commercial package of the integrated engineering software, is used. To observe the impedance characteristic of the eddy current senor with the sensor position and lift-off, the eddy current testing analysis is performed on the ferromagnetic plate with defect. Considering the skin depth of the ferromagnetic specimen, the 800(Hz) driving source is chosen. The result shows that electro motive force is reduced as the probe moves to near the defect and the lift-off of the probe increases.

  • PDF