• Title/Summary/Keyword: impedance bandwidth

Search Result 633, Processing Time 0.03 seconds

Fabrication and Characterization of the Transmitter and Receiver Modules for Free Space Optical Interconnection (자유공간 광연결을 위한 송수신 모듈의 제작및 성능 분석)

  • 김대근;김성준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.16-22
    • /
    • 1994
  • In this paper, transmitter and receiver modules for free space optical interconnection are implemented and characterized. In the transmitter module, bias circuitry which inject current into the direct modulated laser diode is fabricated and in the receiver module, p-i-n diode is integrated with an MMIC amplifying stage. Laser diode has a direct-modulated bandwidth of 2 GHz at 1.4 Ith bias while p-i-n diode and amplifying stage has a bandwidth of 1.3 GHz and 1.5 GHz, repectively. Optical interconnection has a bandwidth of 1.3 GHz and linearly transmit modulated voltage signal up to 1.5 Vp-p. Measured loss of optical interconnection is 5dB which is composed of optoelectronic conversion loss of 15 dB, electrical impedance mismatch loss of 6.7 dB in transmitter module and gain of 18 dB in receiver module. Seperation between transmitter and receiver can be extended up to 50 cm by using a lens.

  • PDF

The sideband Microstrip Patch Antenna with L-shaped Aperture (L자형 개구면을 갖는 광대역 마이크로스트림 패치 안테나)

  • Shin, Ho-Sub;kim, Nam;Jang, Yong-Woong;Rhee, Seung-Yup
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.350-353
    • /
    • 2000
  • In this paper, we designed the microstrip patch antenna with L-shaped aperture, which greatly enhances its bandwidth. We optimized to get a maximum bandwidth. The microstrip patch antenna with L-shaped aperture has the widest bandwidth of the conventional aperture coupled microstrip patch antenna. This antenna also has the low-cross polarization level. The effects of changing several key design parameters of the antenna are investigated. We calculated the VSWR, input impedance, and radiation pattern.

  • PDF

The Design on a Wideband Active Printed Dipole Antenna using a Balanced Amplifier

  • Lee, Sung-Ho;Kwon, Se-Woong;Lee, Byoung-Moo;Yoon, Young-Joong;Song, Woo-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.112-116
    • /
    • 2002
  • In this paper, the active integrated antenna(AIA) using a wideband printed dipole antenna and a balanced amplifier is designed and fabricated. The proposed active printed dipole antenna has characteristics of easy matching, wide bandwidth and higher output power To feed balanced signal to printed dipole, a Wilkinson power divider and delay lines are used. The measured result shows that, at 6 GHz center frequency, the impedance bandwidth is 22 % (VSWR < 2), 3 dB gain bandwidth is 28 %, the maximum gain is 14.77 dBi, and output power at P1 dB point is 23 dBm.

A Study on the Characteristics of Microstrip Patch Antenna with Slot/T-Slot Capacitive Coupling (슬롯/T-슬롯 커패시티브 커플링을 이용한 마이크로스트립 패치 안테나의 특성 연구)

  • Seo, Ki-Won;Roh, Hyoung-Hwan;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1282-1288
    • /
    • 2010
  • This paper proposes a novel microstrip patch antenna to make impedance matching possible by using slot/T-slot capacitive coupling between the patch and 50 $\Omega$ feed line on a ground plane. The single band/linear polarization patch antenna shows linear polarization at 2.4 GHz band. Under -10 dB return loss, the single band/linear polarization patch antenna obtains 50 MHz bandwidth at 2.37 GHz~2.42 GHz. The dual band/dual polarization microstrip patch antenna shows circular polarization at 2.4 GHz band and linear polarization at 3.1 GHz band. Under -10 dB return loss, The dual band/dual polarization microstrip patch antenna obtains 340 MHz bandwidth at 2.23~2.57 GHz and 375 MHz bandwidth at 2.95~3.325 GHz.

A Wideband Circularly Polarized Pinwheel-Shaped Planar Monopole Antenna for Wireless Applications

  • Lee, Wang-Sang;Oh, Kyoung-Sub;Yu, Jong-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.155-160
    • /
    • 2012
  • A wideband circularly polarized pinwheel-shaped planar monopole antenna fed by a wideband feeding network is presented in this paper. The proposed antenna is formed by four wideband planar monopole antenna elements with aquadruple feeding network in order to improve the performance of circular polarization. Additionally, the antenna, which is introduced here, has a high gain in the z axis direction because of its folded antenna structure. The attractive characteristics of the proposed antenna are the wide impedance bandwidth of 87.3 % (1 GHz to 2.55 GHz), the 3 dB axial ratio (AR) bandwidth of 92.3 % (1.05 GHz to 2.85 GHz), and the maximum gain within the 3 dB AR bandwidth is about 8.24 dBic.

Design of a Low-Profile, High-Gain Fabry-Perot Cavity Antenna for Ku-Band Applications

  • Nguyen, Truong Khang;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.306-313
    • /
    • 2014
  • A Fabry-Perot resonator cavity antenna for Ku-band application is presented in this paper. The Fabry-Perot cavity is formed by a ground plane and a frequency selective surface (FSS) made of a circular hole array. The cavity resonance is excited by a single-feed microstrip patch located inside the cavity. The measured results show that the proposed antenna has an impedance bandwidth of approximately 13% ($VSWR{\leq}2$) and a 3-dB gain bandwidth of approximately 7%. The antenna produces a maximum gain of 18.5 dBi and good radiation patterns over the entire 3-dB gain bandwidth. The antenna's very thin profile, high directivity, and single excitation feed make it promising for use in wireless and satellite communication applications in a Ku-band frequency.

A Wideband Ridge SIW-to-SIW Transition for Microwave Applications (초고주파 응용을 위한 광대역 Ridge SIW와 SIW 전이 구조)

  • Jeon, Jiwon;Byun, Jindo;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.270-277
    • /
    • 2013
  • In this paper, we propose a wideband ridge SIW(Ridge Substrate Integrated Waveguide)-to-SIW(Substrate Integrated Waveguide) transition. The proposed transition structure is designed to acquire a wide bandwidth by inserting through via holes at the regular interval for an impedance matching and an E-field mode matching method. The measurement results show a fractional bandwidth is 29.1 % at 20 dB return loss from the center frequency(11 GHz). The maximum insertion loss is 0.49 dB from 9.21 GHz to 12.41 GHz.

Design of an Ultra Wide Band Band-pass Filter with Open-Stubs (초광대역 개방형 스터브 대역통과 여파기의 설계)

  • Yoon, Ki-Cheol;Kang, Chul-Ho;Hong, Tae-Ui;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.37-43
    • /
    • 2013
  • In this paper, an UWB (Ultra Wide Band) band-pass filter with open stubs using SIR (Stepped Impedance Resonator) structure is presented. The proposed band pass filter (BPF) has SIR structure instead of open stubs for UWB application with low insertion loss. The bandwidth of the proposed BPF is 103 % at the center frequency of 5.8GHz and the insertion and return losses are 0.17dB and 13.1dB, respectively. Also, the entire size of the proposed band-pass filter is $21.6{\times}17.8mm^2$.

EMI based multi-bolt looseness detection using series/parallel multi-sensing technique

  • Chen, Dongdong;Huo, Linsheng;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • In this paper, a novel but practical approach named series/parallel multi-sensing technique was proposed to evaluate the bolt looseness in a bolt group. The smart washers (SWs), which were fabricated by embedding a Lead Zirconate Titanate (PZT) transducer into two flat metal rings, were installed to the bolts group. By series connection of SWs, the impedance signals of different bolts can be obtained through only one sweep. Therefore, once the loosening occurred, the shift of different peak frequencies can be used to locate which bolt has loosened. The proposed multi input single output (MISO) damage detection scheme is very suitable for the structural health monitoring (SHM) of joint with a large number of bolts connection. Another notable contribution of this paper is the proposal of 3-dB bandwidth root mean square deviation (3 dB-RMSD) which can quantitatively evaluate the severity of bolt looseness. Compared with the traditional naked-eye observation method, the equivalent circuit based 3-dB bandwidth can accurately define the calculation range of RMSD. An experiment with three bolted connection specimens that installed the SWs was carried out to validate our proposed approach. Experimental result shows that the proposed 3 dB-RMSD based multi-sensing technique can not only identify the loosened bolt but also monitor the severity of bolt looseness.

Broadband Microstrip Patch Antenna Design (광대역 마이크로스트립 패치 안테나 설계)

  • 이호준;이재영;김종규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • In this paper, the wideband microstrip patch antennas for the Personal communications Service (PCS : 1750∼1870 MHz) and International Mobile Telecommunications-2000 (IMT-2000 : 1920∼2170 MHz) dual band are studied. Experimental and simulation results on the dual band antenna are presented. Simulation results are in good agreement with measurements. The experimental and simulation results confirm the wideband characteristics of the antenna. The studied antenna satisfied the wideband characteristics that are required characteristics for above 420 MHz impedance bandwidth for the PCS and IMT-2000 dual band antenna. In this paper, through the designing of a dual band antenna, we have presented the availability for PCS & IMT-2000 base station antenna. An impedance bandwidth of 33% (VSWR<1.5, 650 GHz) and a maximum gain of 7dB can be achieved. The radiation pattern is stable across the passband.

  • PDF