• Title/Summary/Keyword: impact-bending test

Search Result 163, Processing Time 0.021 seconds

Suitable Conditions of Producing the LVL from Pitch Pine and its Paint Film Durability (리기다소나무 단판적층재(單板積層材)의 제조조건(製造條件)에 따른 물리적성질(物理的性質) 및 도장성능(塗裝性能))

  • Park, Sang-Bum;Kong, Young-To;Jo, Jae-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.3-11
    • /
    • 1989
  • This study was carried out to investigate the physical and mechanical properties. durability of adhesive bond and paint film for the basic data which were required to determine the suitability as a raw material for furniture the laminated veneer lumber (LVL) with pitch pine (Pinus rigida Mill). The results obtained were as follows; 1) The proper pressing time for making the LVL was over 45 second per milimeter of LVL thickness. 2) The bending strength of the LVL was lower than that of the solid wood but the compressive strength of the LVL was similar to that of the solid wood. The strength increased with the decrease of veneer thickness. 3) The impact bending absorbed energy of the LVL was 0 to 0.3 kg.m/$cm^2$ in the direction of parallel to the grain. The energy of the LVL was lower than that of the solid wood (0.68 kg.m/$cm^2$). 4) In warm water soaking and cold-dry tests, delamination of adhered layers surface crack, swelling, and color change were not found when the hot pressing time was over 45 second per milimeter of LVL thickness. As a result of soak under vacuum test shrinkage in the direction of parallel to the grain was about -1.0 percent and. was about 3.0 percent in the direction of the perpendicular to the grain. 6) The film cacks on the LVL's surface after the wet and cold-dry test were not found at all. 7) In the use of the LVL for interior decoration it was considered that the surface of the LVL be overlaid crossly with fancy veneers of birch and paulownia, etc. This cross overlayirg methods have resulted in few cracks on the fancy veneer.

  • PDF

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

Effect of artificial aging on mechanical and physical properties of CAD-CAM PMMA resins for occlusal splints

  • Julia Correa Raffaini;Eduardo Jose Soares;Rebeca Franco de Lima Oliveira;Rocio Geng Vivanco;Ayodele Alves Amorim;Ana Lucia Caetano Pereira;Fernanda Carvalho Panzeri Pires-de-Souza
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.5
    • /
    • pp.227-237
    • /
    • 2023
  • PURPOSE. This study aimed to assess and compare the color stability, flexural strength (FS), and surface roughness of occlusal splints fabricated from heat-cured acrylic resin, milled polymethyl methacrylate (PMMA)-based resin, and 3D-printed (PMMA) based-resin. MATERIALS AND METHODS. Samples of each type of resin were obtained, and baseline measurements of color and surface roughness were recorded. The specimens were divided into three groups (n = 10) and subjected to distinct aging protocols: thermomechanical cycling (TMC), simulated brushing (SB), and control (without aging). Final assessments of color and surface roughness and three-point bending test (ODM100; Odeme) were conducted, and data were statistically analyzed (2-way ANOVA, Tukey, P <.05). RESULTS. Across all resin types, the most significant increase in surface roughness (Ra) was observed after TMC (P < .05), with the 3D-printed resin exhibiting the lowest Ra (P < .05). After brushing, milled resin displayed the highest Ra (P < .05) and greater color alteration (∆E00) compared to 3D-printed resin. The most substantial ∆E00 was recorded after brushing for all resins, except for heat-cured resin subjected to TMC. Regardless of aging, milled resin exhibited the highest FS (P < .05), except when compared to 3D-printed resin subjected to TMC. Heat-cured resin exposed to TMC demonstrated the lowest FS, different (P < .05) from the control. Under control conditions, milled resin exhibited the highest FS, different (P < .05) from the brushed group. 3D-printed resin subjected to TMC displayed the highest FS (P < .05). CONCLUSION. Among the tested resins, 3D-printed resin demonstrated superior longevity, characterized by minimal surface roughness and color alterations. Aging had a negligible impact on its mechanical properties.