• Title/Summary/Keyword: impact vibration tests

Search Result 138, Processing Time 0.029 seconds

Shock Analysis of Mobile Power Supply Container for Radar with MIL-STD-810H (MIL-STD-810H를 적용한 레이더 전력공급용 이동식 컨테이너의 충격해석)

  • Kwon, Jaeeon;Shin, Dongwon;Hur, Jangwook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.569-576
    • /
    • 2021
  • Radar is a ground defense system that detects enemy aircraft and receives power from a mobile power supply in an emergency. Serious problems may occur if the equipment is damaged by impact during transportation for use. The US military standard MIL-STD-810H contains information on environmental tests such as shock and vibration applied to munitions. Therefore, in this study, the transient analysis of ANSYS 19.2 was performed using the impact data specified in MIL-STD-810H as an input value. Through this, the maximum stress generated in the impact environment of the mobile power supply container was derived, and the safety margin was calculated to confirm the reliability of the container.

Impact Damage Detection in a Composite Stiffened Panel Using Built-in Piezoelectric Active Sensor Arrays (배열 압전 능동 센서를 이용한 복합재 보강판의 충격 손상 탐지)

  • Park, Chan-Yik;Cho, Chang-Min
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.21-27
    • /
    • 2007
  • Low-velocity impact damage in a composite stiffened panel was detected using built-in piezoelectric active sensor arrays. Using these piezoelectric active sensors, various diagnostic signals were generated to propagate Lamb waves through the structure and the responses were picked up to detect changes in the structure's vibration signature due to the damage. Three algorithms - ADI(Active Damage Interrogation), TD RMS (Time Domain Root Mean Square) and STFT (Short Time Fourier Transform) - were examined to express the features of the signal changes as one damage index. From damage detecting tests, two impact induced delaminations were detected and the location was estimated with the algorithms and diagnostic signals.

A Study on Safe Permanent Joint Type Multiple Socket-Outlets Development without Soldering Crimped Connection (안전형 비납땜 틀고정 영구 접속형 멀티콘센트 개발에 관한 연구)

  • Cho, Won-Seok;Lee, Wi-Ro
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.47-54
    • /
    • 2015
  • Normally, multiple socket-outlet is manufactured with soldered, welded permanent connection (termination). Because this procedure is very non-environmental and requires many labor forces, many companies skip this process. To solve this these problems, this research had to design permanent joint type multiple socket-outlet, develop safer multiple socket-outlet than is sold in markets. Progressing this research, we took 3 steps. First, we had to design device for fixing a frame suitable for multiple socket-outlet. Second, this multiple socket-outlet must pass fundamental standards through international standard (IEC 60884-1) and Korean standard (K 60884-1) tests. Third, it had to pass both several mechanical and electrical tests which is more strict than fundamental standards and vibration and impact tests following KS standards for enhancing its safety. After finishing 3 steps, we could obtain objective and fair data, develop environmental permanent joint type multiple socket-outlet without soldering crimped connection.

Experimental investigation of impact-sliding interaction and fretting wear between tubes and anti-vibration bars in steam generators

  • Guo, Kai;Jiang, Naibin;Qi, Huanhuan;Feng, Zhipeng;Wang, Yang;Tan, Wei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1304-1317
    • /
    • 2020
  • The tubes in a heat exchanger, such as a steam generator (SG), are subjected to crossflow, and interaction between tubes and supports can happen, which can cause fretting wear of tubes. Although many experiments and models have been established, some detailed mechanisms are still not sufficiently clear. In this work, more attention is paid to obtain the regulation of impact and sliding in the complex process and many factors, such as excitation forces and clearances. The responses and contact forces were analyzed to obtain clear understanding of the influences of these factors. Room temperature tests in the air were established. The results show that the effect of clearance on the normal work rate is not monotonous and instead has two peaks. The force ratio can influence the normal work rate by changing the distribution of contact angles, which can result in higher sliding in the contact process. Fretting wear tests are conducted, and the wear surfaces are analyzed by a scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). The results of this work can serve as a reference for impactsliding contact analysis between AVBs and tubes in steam generators.

Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe (하수관거 배면 공동 탐지를 위한 충격반향법의 적용성 평가)

  • Song, Seokmin;Kim, Hansup;Park, Duhee;Kang, Jaemo;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.5-14
    • /
    • 2016
  • The leakage of water under sewer pipelines is one of main sources of sinkholes in urban areas. We performed laboratory model tests to investigate the presence of cavities using impact-echo method, which is a nondestructive test method. To simulate a concrete sewer pipe, a thin concrete plate was built and placed over container filled with sand. The cavity was modeled as an extruded polystyrene foam box. Two sets of tests were performed, one over sand and the other on cavity. A new impact device was developed to apply a consistent high frequency impact load on the concrete plate, thereby increasing the reliability of the test procedure. The frequency and transient characteristics of the measured reflected waveforms were analyzed via fast Fourier transform and short time Fourier spectrum. It was shown that the shapes of Fourier spectra are very similar to one another, and therefore cannot be used to predict the presence of cavity. A new index, termed resonance duration, is defined to record the time of vibration exceeding a prescribed intensity. The results showed that the resonance duration is a more effective parameter for predicting the presence of a cavity. A value of the resonance period was proposed to estimate the presence of cavity. Further studies using various soil types and field tests are warranted to validate the proposed approach.

An Experimental Study for Preventing the Resonance of Steam Turbine Blade (증기터빈 블레이드의 공진 방지를 위한 실험 연구)

  • 하현천;이동진;류석주
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.410-415
    • /
    • 2001
  • This paper describes an experimental analysis for improving the stability of blade failure due to the vibration resonance, which happens in the low-pressure steam turbine. Some cracks due to high cycle fatigue were found in the blades of a low-pressure turbine after long time operation. Impact test showed that such failure was mainly caused by the resonance. In other words, since one of the natural frequencies of the grouped blade is very close to the excitation frequency of the nozzle, the resonant vibration leads to a large amplitude of displacement and results in a large amount of stress that may cause fatigue failures in the blades. It is interesting that the blade failures occur only at blades neighboring with the nodal points of the natural vibration mode whose natural frequency is close to the nozzle passing frequency. The effective methods for increasing the reliability against the blade vibration are a heightening the fatigue limit of the blade using an advanced material and a removing the resonance away from the operating speed. It is well known that the removal of theresonance could be obtained by the installation of different types of shrouds, wires, and links between the blades as well as by the chance of the number of nozzles. In the present work, two kinds of modification for avoiding the resonance haute been considered; 1) slot-type finger, 2) long span cover. Full-scale mockup tests have been performed in order to confirm the verification for modification in the shop. Test results show that the use of long span cover is very useful to change the natural frequencies of the grouped blade and to avoid the resonance effectively.

  • PDF

Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration (궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구)

  • Jung-Youl Choi;Sang-Wook Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1057-1063
    • /
    • 2023
  • The urban railway sleeper floating track, the subject of this study, is an anti-vibration track to reduce vibration transmitted to the structure. currently, the replacement cycle of resilience pad for sleeper floating tracks is set and operated based on load. however, most previous studies were conducted on load-based structural safety aspects, such as fatigue life evaluation of sleeper anti-vibration pads and increase in track impact coefficient and track support stiffness due to increase in spring stiffness. therefore, in this study, we measure the vibration acceleration of the ballast for each analysis section and use the results of 7 million fatigue tests to calculate the spring stiffness of the resilience pad for each section. the spring stiffness of the resilience pad calculated for each section was set as the analysis data and the concrete vibration acceleration was derived analytically. the adequacy of analysis modeling was verified as the analyzed concrete bed vibration acceleration for each section was within the field-measured concrete bed vibration acceleration range. using the vibration acceleration curve according to the derived spring stiffness change, the spring stiffness of the resilience pad is estimated from the measured vibration acceleration. therefore, we would like to present a technique that can estimate the spring stiffness of resilience pad of a running track using the vibration acceleration of the measured concrete bed.

Experimental Study on Cushioning Characteristics of Pneumatic Cylinder with Meter-In/Meter-Out Control

  • Kim, Dong-Soo;Lee, Sang-Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2002
  • Pneumatic cylinder is widely used fur mechanical handling systems. Often, the impact occurs at the both ends points of pneumatic cylinder and generates the destructive shock with in the structural operating members of the machine or equipment. To reduce the damage of system, therefore, shock absorbing devices are required. Cushioning of pneumatic cylinders at one or both ends of piston stroke is used to reduce the shock and vibration. The cylinder body have to withstand under conditions of high velocity and load. In this research pneumatic cushioning cylinder moving tests have been conducted for different load mass and supply pressure. The velocity of pneumatic cylinder actuation system which is set vertically with multiple orifice cushion sleeve is controled with the meter-in/out control system. This study examines the dynamic characteristics of pneumatic cylinder which are used as cushion devices. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion region characteristics was also revealed in the meter-in control system.

Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings

  • Ross, Andrew S.;El Damatty, Ashraf A.;El Ansary, Ayman M.
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.537-564
    • /
    • 2015
  • Excessive motions in buildings cause occupants to become uncomfortable and nervous. This is particularly detrimental to the tenants and ultimately the owner of the building, with respect to financial considerations. Serviceability issues, such as excessive accelerations and inter-story drifts, are more prevalent today due to advancements in the structural systems, strength of materials, and design practices. These factors allow buildings to be taller, lighter, and more flexible, thereby exacerbating the impact of dynamic responses. There is a growing need for innovative and effective techniques to reduce the serviceability responses of these tall buildings. The current study considers a case study of a real building to show the effectiveness and robustness of the TLD in reducing the coupled lateral-torsional motion of this high-rise building under wind loading. Three unique multi-modal TLD systems are designed specifically to mitigate the torsional response of the building. A procedure is developed to analyze a structure-TLD system using High Frequency Force Balance (HFFB) test data from the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University of Western Ontario. The effectiveness of the unique TLD systems is investigated. In addition, a parametric study is conducted to determine the robustness of the systems in reducing the serviceability responses. Three practical parameters are varied to investigate the robustness of the TLD system: the height of water inside the tanks, the amplitude modification factor, and the structural modal frequencies.

Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone (쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구)

  • Kim, Minsong;Kim, Jaenam;Byun, Youngseop;Kim, Jeong;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.