• Title/Summary/Keyword: impact tests

Search Result 1,771, Processing Time 0.037 seconds

A Study on the Modal Parameter Identification of a Ship using Operational Modal Analysis (실험 및 실선 계측을 통한 진동특이치 평가에 관한 연구)

  • Kim, Byoung-Ook;Jin, Bong-Man;Kong, Young-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.497-501
    • /
    • 2009
  • When modal tests on the large structures and machinery are performed, it is in general difficult and inaccurate to use artificial excitation devices such as impact hammers, because of insufficient capacity of the device and different environmental conditions of the concerned structures. Therefore, the Operational Modal Analysis(OMA) technique, which is performed by measuring only vibration responses during the operation of the objective product, can be one alternative. In this paper, the way to identify natural frequencies, mode shapes and damping ratios of a ship by using the OMA during the sea trail is described.

Impact of Socioeconomic, Behavioral and Psychological Factors for Children's Self-Reported Oral Symptoms

  • Kwak, Seon-Hui;Shin, Bo-Mi
    • Journal of dental hygiene science
    • /
    • v.17 no.3
    • /
    • pp.257-266
    • /
    • 2017
  • This study investigated factors affecting the subjective experience of oral symptoms among 2,285 elementary school students in the fourth and sixth grades using the Korean survey on the Health of Youth and Children in 2010. After conducting chi-square and Mann-Whitney U tests, we performed multiple logistic regression analysis to determine the factors affecting children's experience of oral symptoms. We found that the factors most frequently associated with the subjective experience of more oral symptoms were lower tooth brushing frequency, greater intake of foods that cause dental caries, higher stress levels, and lower levels of support from friends. In conclusion, determinants of children's oral health, such as children's oral health behaviors and psychological factors must be considered in a multifaceted approach to developing programs to promote oral health among children.

Development of a Strut Mount with High Reliability by Improving Durability (내구성 향상을 통한 고 신뢰성 Strut Mount 개발)

  • Chung, Chan-Hong
    • Journal of Applied Reliability
    • /
    • v.11 no.1
    • /
    • pp.31-41
    • /
    • 2011
  • A strut mount is an important part of vehicles which reduces the vibration and the impact transmitted from the wheels while supporting a shock absorber and a coil spring. Rubber compounding, shape design, and process design technologies are important components to improve the functionality of a strut mount such as durability, static, dynamic, and torsional characteristics. Among them the rubber compounding technology is the key technology which dominates the quality of a strut mount. In this study a strut mount with high reliability has been developed by adopting new rubber compounding and improving the shape of the inner plate and the isolator. Through the tests for prototypes it has been shown that the durability has been improved more than 2.5 times, from about 60,000 cycles to about 160,000 cycles.

The Characteristics of Settlement on the Roadbed Reinforcement Materials of Cyclic Loading with a Falling Water (반복재하 하중을 받는 철도노반재료의 강우에 따른 침하 특성)

  • 황선근;최찬용;이진욱;오상덕
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.562-567
    • /
    • 2001
  • In this study, performance of reinforced railroad roadbeds with the slag(HMS-25) and soil were investigated through the real scale railroad roadbed tests. Several real scale reinforced railroad roadbeds were constructed in the laboratory with different subgrade conditions and were tested with the estimated actual train loads including the impact loading of train. The affecting factors such as plastic & elastic settlement roadbed layers as well as surface of rails were measured. The settlement at rail surface and roadbed surface of case of soil and slag roadbed comparative with good roadbed site were 2.3, 5.7 times and 1.9, 1.6 times, respectively.

  • PDF

Scale Modeling Technique for the Crash Analysis of Railway Vehicle Structure (철도차량 충돌 해석을 위한 축소모델링 기법 연구)

  • 김범진;허승진
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.231-236
    • /
    • 2002
  • Todays, crash safety requirements of the railway vehicle structures become important design criterion according to the increased driving speed and the lightweight construction. Although the crash analysis using computer simulation can be effectively applied to predict the crash performance of the railway vehicles in the early design stage, the optimized design w.r.t the crash safety could be realized by the crash tests with actual prototype vehicles. However, it is very expensive and time-consuming task to perform the crash test of the railway vehicles. As a measure to cope with the problem, in this paper, the scale modeling technique is suggested and experimentally verified to predict the impact energy absorption characteristics of full scale model of aluminum extrusions sub-structures and the high-speed railway vehicle structure.

Vibration Analysis and Diagnosis for Reactor Agitator (Reactor Agitator 의 진동분석 및 진단사례)

  • Yoo, Ju-Hyung;Jung, Goo-Choong;Lee, Sun-Hwi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.107-112
    • /
    • 2012
  • All chemical processes are centered in the chemical reactor. Chemical reactions are often accompanied by mixing. Mixing can influence not just reaction rate but also product distribution if more than one product is possible. So, reactor agitator is more critical in industrial reactions. High vibration was occurred on reactor agitator which is critical equipment in HDPE plant. This paper describes analysis and diagnosis for agitator vibration throughout some tests. High vibration has been occurred by misalignment and resonance. Through the correction it could be stable.

  • PDF

Impact of External Temperature Environment on Large FCBGA Sn-Ag-Cu Solder Interconnect Board Level Mechanical Shock Performance

  • Lee, Tae-Kyu
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.53-59
    • /
    • 2014
  • The mechanical stability of solder joints in electronic devices with Sn-Ag-Cu is a continuous issue since the material was applied to the industry. Various shock test methods were developed and standardized tests are used in the industry worldwide. Although it is applied for several years, the detailed mechanism of the shock induced failure mechanism is still under investigation. In this study, the effect of external temperature was observed on large Flip-chip BGA components. The weight and size of the large package produced a high strain region near the corner of the component and thus show full fracture at around 200G level shock input. The shock performance at elevated temperature, at $100^{\circ}C$ showed degradation based on board pad designs. The failure mode and potential failure mechanisms are discussed.

On the reinforcement of straw pulp

  • Y. Yu;Kettunen;H. Paulapuro
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.232-238
    • /
    • 1999
  • The reinforcement of wheat straw pulp sheets with softwood kraft was studied, with special emphasis on the impact of softwood kraft beating and the proportion softwood kraft in straw pulp. the reinforcement was evaluated by measuring the tensile stiffness sand in-plane fracture behavior of samples. the results were compared with a mechanical pulp (TMP) and with a hardwood birch kraft, both reinforced with the same softwood kraft. Wheat straw pulp forms strong interfiber bonds. Therefore, its tensile stiffness and tensile strength are larger than TMP used. In-plane tear tests showed that a pure wheat straw pulp sheet has low fracture energy and correspondingly a narrow fracture process zone. The fracture energy of the reinforced straw sheets was found to increase linearly with the proportion of both unbeaten and beaten softwood pulps.

Correlation between Longitudinal Wave Velocity and Strength of Early-aged Concrete (초기 재령 콘크리트의 종파 속도와 강도의 상관관계)

  • 이휘근;이광명;김동수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.67-74
    • /
    • 2000
  • The usage of nondestructive testing on early-aged concrete leads to enhacned safty and allows effective scheduling of construction, thus making it possible to maximize the time and cost efficiencies. In this study, a reliable nondestructive strength evaluation method for early-aged concrete using the longitudinal wave velocity is proposed. Compression tests were performed to examine factors influencing the velocity-strength relationship of concrete, such as water-cement (w/c) ratio, fine aggregate ratio, curing temperature, and curing condition. The test results show that a change in the w/c ratio and curing temperature has minor effect on the velocity-strength relationship/ However, curing condition significantly influences the velocity-strength relationship of early-aged concrete. Moreover, the longitudinal wave velocity increases with decreasing fine aggregate ratio. It is concluded from this study that the strength evaluation of early-age concrete can be achieved by a nonlinear equation which considers the effects of curing condition and fine aggregate ratio.

Characteristics of Behavior of the Crushed Stone Reinforced Roadbed under Cyclic Loading (동적하중 재하시 쇄석강화노반의 거동 특성)

  • 황선근;이성혁;이일화;최찬용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.525-532
    • /
    • 2001
  • In this study, performance of reinforced railroad roadbeds with the crushed stones was investigated through the real scale railroad roadbed tests. Several real scale reinforced railroad roadbeds were constructed in the laboratory with different subgrade conditions and were tested with the estimated actual train loads including the impact loading of train. The affecting factors such as settlement, earth pressure and stress change at the surface of reinforced roadbed, subgrade layers as well as surface of rails were measured. It was found through the actual testing that for the roadbed with the same thickness, the settlement and vibration level (velocity) of reinforced roadbed decreases with the increase of reaction modulus of subgrade. The settlement of reinforced roadbed with the same reaction modulus of subgrade also decreases with the increase of thickness of the reinforced roadbed.

  • PDF