• Title/Summary/Keyword: impact tests

Search Result 1,771, Processing Time 0.025 seconds

Effects of Auricular Acupressure on Low Back Pain and Headache in Nurses (귀 지압이 간호사의 요통과 두통에 미치는 효과)

  • Park, Eun-Mee;Jo, Ga-Won;Sim, Sug-Hee;Choi, Jong-Min;Lee, Eun-Jin
    • Journal of East-West Nursing Research
    • /
    • v.28 no.2
    • /
    • pp.75-82
    • /
    • 2022
  • Purpose: The aim of the study was to examine the effect of auricular acupressure on low back pain and headaches in nurses. Methods: A open-label randomized controlled trial was used. Thirty-nine nurses with low back pain for more than 3 months participated in this study. Auricular acupressure stickers were applied to the participants's waist, head and Shen men in the experimental group for 2 weeks. The Numeric Rating Scale (NRS), the Visual Analog Scale (VAS), and the Headache Impact Test-6 (HIT-6) were administered to measure participants' pain. Results: The mean differences of the VAS and the HIT-6 were significant in the experimental group at the pre and post-tests. A repeated-measures ANOVA revealed that low back pain and headache measured using NRS in the experimental group decreased significantly compared to the control group at the pre and post-tests over 2 weeks. Conclusion: The results of this study indicated that auricular acupressure could be used as a useful intervention for self-care for nurses with low back pain and headache.

Spending on Distribution Information and Communication Technologies and Cost-Effective Operation in Banks

  • PHAN, Anh;LU, Chi Huu;NGUYEN, Phuong Minh
    • Journal of Distribution Science
    • /
    • v.20 no.9
    • /
    • pp.11-21
    • /
    • 2022
  • Purpose: Many concerns have appeared in banking sector in the digital era and one of them is that technology development will increase operation costs of banks. Motivated by this issue, our study aims to explore the effect of technological and digital investments on cost-effectiveness of banking operation. Research design, data and methodology: To reach a clear answer, we use the data of 12 commercial banks spanning from 2011 to 2020 in Vietnam and employ multivariate regression analysis as well as perform various robustness tests. Results: Our regression result indicates that the adverse effect of technological spending on cost-effective operation. This finding still remains unchanged when we conduct different robust tests. Also, we find that this negative impact becomes more evident in large banks than in small ones. Conclusions: The paper provides one of the most important empirical results for mangers and policy-makers in banking sphere, especially in Vietnam where regulators have been calling for continuously investing into technological innovation in banks. The evidence confirms that banks should carefully consider an increase in spending on distribution information and communication technologies when constructing business strategies related to expanding digitalization. Our research is also useful for countries having similar financial structure to Vietnam.

Comparative Study on the Weldability of Different Shipbuilding Steels

  • Laitinen, R.;Porter, D.;Dahmen, M.;Kaierle, S.;Poprawe, R.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.7-13
    • /
    • 2002
  • A comparison of the welding performance of ship hull structural steels has been made. The weldability of steels especially designed for laser processing was compared to that of conventional hull and structural steels with plate thicknesses up to 12 mm. Autogenous laser beam welding was used to weld butt joints as well as skid and stake welded T-joints. The welds were assessed in accordance with the document "The Classification Societies" Requirements for Approval of $CO_2$ Laser Welding Procedures" Small imperfections in the weld only grew slightly in root bend tests and they only had a minor influence on the fatigue properties of laser fillet welded joints. In Charpy impact tests, the 27 J transition temperature of the weld metal and HAZ ranged from below -60 to $-50^{\circ}C$. The amount of martensite in the weld metal depended on the carbon equivalent of the steel with the highest amounts and highest hardness levels in conventional EH 36 (389 HV 5). Thermomechanically rolled steels contained less martensite and showed a correspondingly lower maximum hardness.ximum hardness.

  • PDF

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.

The behaviour of a strip footing resting on geosynthetics-reinforced slopes

  • Hamed Yazdani;Mehdi Ashtiani
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.623-636
    • /
    • 2023
  • This study utilized small-scale physical model tests to investigate the impact of different types of geosynthetics, including geocell, planar geotextile, and wraparound geotextile, on the behaviour of strip footings placed on 0.8 m thick soil fills and backfills with a slope angle of 70°. Bearing capacity and settlement of the footing and failure mechanisms are discussed and evaluated. The results revealed that the bearing capacity of footings situated on both unreinforced and reinforced slopes increased with a greater embedment depth of the footing. For settlement ratios below 4%, the geocell reinforcement exhibited significantly higher stiffness, carrying greater loads and experiencing less settlement compared to the planar and wraparound geotextile reinforcements. However, the performance of geocell reinforcement was influenced by the number and length of the geocell layers. Increasing the geocell back length ratio from 0.44 to 0.84 significantly improved the bearing capacity of the footing located at the crest of the reinforced slope. Adequate reinforcement length, particularly for geocell, enhanced the bearing pressure of the footing and increased the stiffness of the slope, resulting in reduced deflections. Increasing the length of reinforcement also led to improved performance of the footing located on wraparound geotextile reinforced slopes. In all reinforcement cases, reducing the vertical spacing between reinforcement layers from 100 mm to 75 mm allowed the slope to withstand much greater loads.

Cost and Schedule Analysis of Highway Projects based on Project Types

  • Shrestha, Bandana;Shrestha, Pramen P.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.50-56
    • /
    • 2022
  • Change Orders generally impact cost and schedule performance of highway projects. However, highway projects that do not have any change orders also face cost growth and schedule delays. This study seeks to determine the cost and schedule performance of Texas DOT projects by collecting project data for 120 highway projects completed between 2016 to 2020. For the study, we selected project data that has zero or negative change orders which were then grouped and analyzed based on their Project Types i.e., maintenance works; structural works; restoration and rehabilitation works; and safety works. The study found that performance of Maintenance and Safety type projects had less cost and schedule growth among the data analyzed. Statistical tests also found that even though the projects have no change orders, Rehabilitation and Restoration type projects experienced significant schedule growth compared to others. However, the data did not show any significant cost and schedule growth for the projects when statistical tests were performed on overall data. The study concluded that highway projects are experiencing schedule growth even though the projects had no change orders. Results from the study can help planners, engineers, and administrators to gain better insight on how different types of highway projects are performing in terms of cost and schedule and eventually derive appropriate solutions to minimize cost and schedule growth in such projects.

  • PDF

COMPARATIVE STUDY ON THE WELDABILITY OF DIFFERENT SHIPBUILDING STEELS

  • Laitinen, R.;Porter, D.;Dahmen, M.;Kaierle, S.;Poprawe, R.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.222-228
    • /
    • 2002
  • A comparison of the welding performance of ship hull structural steels has been made. The weldability of steels especially designed for laser processing was compared to that of conventional hull and structural steels with plate thicknesses up to 12 mm. Autogenous laser beam welding was used to weld butt joints as well as skid and stake welded T-joints. The welds were assessed in accordance with the document "The Classification Societies′ Requirements for Approval of $CO_2$ Laser Welding Procedures". Small imperfections in the weld only grew slightly in root bend tests and they only had a minor influence on the fatigue properties of laser fillet welded joints. In Charpy impact tests, the 27 J transition temperature of the weld metal and HAZ ranged from below -60 to -5$0^{\circ}C$. The amount of martensite in the weld metal depended on the carbon equivalent of the steel with the highest amounts and highest hardness levels in conventional EH 36 (389 HV 5). Thermomechanically rolled steels contained less martensite and showed a correspondingly lower maximum hardness.

  • PDF

Predicting soil-water characteristic curves of expansive soils relying on correlations

  • Ahmed M. Al-Mahbashi;Muawia Dafalla;Mosleh Al-Shamrani
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.625-633
    • /
    • 2023
  • The volume changes associated with moisture or suction variation in expansive soils are of geotechnical and geoenvironmental design concern. These changes can impact the performance of infrastructure projects and lightweight structures. Assessment of unsaturated function for these materials leads to better interpretation and understanding, as well as providing accurate and economic design. In this study, expansive soils from different regions of Saudi Arabia were studied for their basic properties including gradation, plasticity and shrinkage, swelling, and consolidation characteristics. The unsaturated soil functions of saturated water content, air-entry values, and residual states were determined by conducting the tests for the entire soil water characteristic curves (SWCC) using different techniques. An attempt has been made to provide a prediction model for unsaturated properties based on the basic properties of these soils. Once the profile of SWCC has been predicted the time and cost for many tests can be saved. These predictions can be utilized in practice for the application of unsaturated soil mechanics on geotechnical and geoenvironmental projects.

The Performance Analysis to Identify the Reuse and Assembly Impact of Temporary Equipment

  • Bae, Sung-Jae;Park, Jun-Beom;Kim, Jung-Yeol;Kim, Young-Suk;Kim, Jun-Sang;Jo, Jae-Hun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1252-1252
    • /
    • 2022
  • Temporary work that utilizes temporary equipment (e.g., system scaffold and system pipe support) in construction work is one of the most vulnerable work from a safety perspective in South Korea. Typically, temporary equipment is reused at construction sites. The Korea Occupational Safety and Health Agency announced guidelines regarding the performance standards for reusable temporary equipment to prevent the accidental collapse of temporary facilities. Nevertheless, temporary facilities' collapse still occurs, which could be attributed to a degradation in the performance due to the reuse of temporary equipment. Therefore, this study investigated the performance of simple temporary structures assembled with new and reused equipment. To this end, an experimental module was designed based on previous research cases, and two experimental models were constructed, in which one was assembled using new equipment (Model A), and the other was built using reused equipment (Model B). To determine the performance of each model, a load test was conducted to measure the maximum load that each model could withstand. The experimental results revealed that the maximum load of Model B was 15% lower than that of Model A. This indicates that there is a meaningful performance difference between those two models. Based on this result, the authors decided to perform additional tests with more realistic models than previous ones. The new experimental module was designed to ensure compliance with the Korean design guidelines. In this presentation, the authors show details of the first tests and their results and plan for the additional test.

  • PDF

Shear mechanical behavior of prefabricated and assembled multi-key group stud connectors

  • Liang Fan;Wen Zeng;Wenhao Zhao;Mengting Wang
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.9-24
    • /
    • 2024
  • In order to study the shear mechanical behavior of prefabricated and assembled multi-key group stud connectors, this paper conducted push-out tests on 10 prefabricated and assembled multi-key group stud connectors, distributed in 5 groups, and detailed the failure modes of each specimen. Based on the finite element software, a total of 22 models of this type of stud connector are established, and validated the finite element models using the push-out tests. Furthermore, the effects of stud diameter, number of key groups, and spacing of key groups on the shear resistance of prefabricated and assembled multi-key group stud connectors are analyzed. Combined with the test and finite element, the force analysis is carried out for the stud and first-pouring and post-pouring concrete. The results show that the spacing and number of key groups have a significant impact on the shear capacity and shear stiffness of the specimen. For a single stud, the shear force is transferred to the surrounding concrete via the stud's root. When the stud is finally cut, the steel and the concrete plate are separated. Under vertical shear force, the top row of studs experiences the highest shear, while the middle row has the least. Based on statistical regression, a formula of assembled multi-key group stud connectors is proposed.