• Title/Summary/Keyword: impact tests

Search Result 1,771, Processing Time 0.025 seconds

High Frequency Signal Analysis of Fuel Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 연료펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1099-1102
    • /
    • 2017
  • High frequency signals are analyzed which are measured at the inlet / outlet pipeline and pump casing during cavitation tests of the fuel pump for the liquid rocket engine. RMS values of each data are shown according to the cavitation number and compared with those of the LOx pump tests and the impact of the cavitation instability is also explored. Analogies about the cavitation number are confirmed between high frequency data of both pumps. In addition, the cavitation instability is found in all the signals and has an affect on the outlet pressure pulsation of the fuel pump.

  • PDF

Towards guidelines for design of loose-laid roof pavers for wind uplift

  • Mooneghi, Maryam Asghari;Irwin, Peter;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.133-160
    • /
    • 2016
  • Hurricanes are among the most costly natural hazards to impact buildings in coastal regions. Building roofs are designed using the wind load provisions of building codes and standards and, in the case of large buildings, wind tunnel tests. Wind permeable roof claddings like roof pavers are not well dealt with in many existing building codes and standards. The objective of this paper is to develop simple guidance in code format for design of loose-laid roof pavers. Large-scale experiments were performed to investigate the wind loading on concrete roof pavers on the flat roof of a low-rise building in Wall of Wind, a large-scale hurricane testing facility at Florida International University. They included wind blow-off tests and pressure measurements on the top and bottom surfaces of pavers. Based on the experimental results simplified guidelines are developed for design of loose-laid roof pavers against wind uplift. The guidelines are formatted so that use can be made of the existing information in codes and standards such as American Society of Civil Engineering (ASCE) 7-10 standard's pressure coefficients for components and cladding. The effects of the pavers' edge-gap to spacer height ratio and parapet height to building height ratio are included in the guidelines as adjustment factors.

Synergistic effect of clay and polypropylene short fibers in epoxy based ternary composite hybrids

  • Prabhu, T. Niranjana;Demappa, T.;Harish, V.;Prashantha, K.
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.97-111
    • /
    • 2015
  • Polypropylene short fiber (PP)-clay particulate-epoxy ternary composites were prepared by reinforcing PP short fiber and clay particles in the range of 0.1 phr to 0.7 phr into epoxy resin. Prepared hybrid composites were characterized for their mechanical, thermal and flame retardant properties. The obtained results indicated an increase in impact resistance, tensile strength, flexural strength and Young's modulus to an extent (up to 0.5 phr clay and 0.5 phr PP short fiber) and then decreases as the reinforcing phases are further increased. The thermal stability of these materials are found to increase up to 0.2 phr clay and 0.2 phr PP addition, beyond which it is decreased. Addition of clay is found to have the negative effect on epoxy-PP short fiber composites, which is evident from the comparison of mechanical and thermal properties of epoxy-0.5 phr PP short fiber composite and epoxy-0.5 phr PP short fiber-0.5 phr clay composite hybrid. UL-94 tests conducted on the composite hybrids have showed a reduction in the burning rate. Morphological observations indicated a greater fiber pull with the addition of clay. The performed tests in the present study indicated that materials under investigation have promising applications in construction, agriculture and decorative purposes.

Effectiveness of the Group-Counseling Program to Improve Social Ability in the Children from Low-Income Families (저소득층 아동의 사회성증진을 위한 집단상담 프로그램 효과 연구)

  • Lee Jung-Sook;Yoo Jung-Seon
    • Journal of Families and Better Life
    • /
    • v.23 no.3 s.75
    • /
    • pp.127-136
    • /
    • 2005
  • The purpose of this study was to assess the effectiveness of a group-counseling program to improve children's social ability. For this study, six children were selected for an experimental group and another six for a control group. They were tested using the Social Skill Rating System for Preschool level. In addition to a quantitative analysis, a qualitative analysis was conducted to examine group processes and changes of each child. The experimental group participated in a socio-drama group art therapy, and game play therapy whereas the control group did not receive any treatment. In order to examine the impact of the intervention, ore-program tests and post-program tests were conducted. The results were as follows: First, children's social ability was improved. There was a significant difference in social ability between the experimental and the control group. Second the group counseling program was proved to be effective. This program was primarily designed for children from low-income families.

Cyclic Behavior of Timber Column Concealed Base Joint

  • Humbert, Jerome;Lee, Sang-Joon;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.123-133
    • /
    • 2013
  • This paper presents experimental and numerical tests on a recently developed timber column concealed base joint. This joint was designed to replace the wood-wood connection found in the post-and-beam structure of Hanok, the traditional Korean timber house. The use of metallic connectors provides an increased ductility and energy dissipation for a better performance under reversed loading, especially seismic. In this study, we investigate the performance of the joint under pseudo-static reversed cyclic moment loading through the study of its ductility and energy dissipation. We first perform experimental tests. Results show that the failure occurs in the metallic connector itself because of stress concentrations, while no brittle fracture of wood occur. Subsequent numerical simulations using a refined finite element model confirm these conclusions. Then, using a practical modification of the joint configuration with limited visual impact, we improve the ductility and energy dissipation of the joint while retaining a same level of rotational strength as the originally designed configuration. We conclude that the joint has a satisfying behavior under reversed moment loading for use in earthquake resistant timber structure in low to moderate seismicity areas like Korea.

Performance evaluation of the lightweight concrete tapered piles under hammer impacts

  • Tavasoli, Omid;Ghazavi, Mahmoud
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Lightweight concrete (LWC) provides an attractive alternative to conventional piles by improving the durability of deep foundations. In this paper, the drivability of cylindrical and tapered piles made of lightweight and common concrete (CC) under hammer impacts was investigated by performing field tests and numerical analysis. The different concrete mixtures were considered to compare the mechanical properties of light aggregate which replaced instead of the natural aggregate. Driving tests were also conducted on different piles to determine how the pile material and geometric configurations affect driving performance. The results indicated that the tapering shape has an appropriate effect on the drivability of piles and although lower driving stresses are induced in the LWC tapered pile, their final penetration rate was more than that of CC cylindrical pile under hammer impact. Also by analyzing wave propagation in the different rods, it was concluded that the LWC piles with greater velocity than others had better performance in pile driving phenomena. Furthermore, LWC piles can be driven more easily into the ground than cylindrical concrete piles sometimes up to 50% lower hammer impacts and results in important energy saving.

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

Seismic Performance Evaluation of Non-seismic T-bar type Steel-Panel Suspended Ceiling using Shaking Table Test (비내진 상세를 갖는 금속마감패널 천장시스템의 진동대 실험을 통한 내진성능평가)

  • Lee, Jae-Sub;In, Sung-Woo;Jung, Dam-I;Lee, Doo-Yong;Lee, Sang-Hyen;Cho, Bong-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.171-180
    • /
    • 2019
  • In Korea, the seismic design of non-structural elements was interested by Earthquake of the 2016 Gyeong-ju and 2017 Po-hang. Among the non-structural elements, the ceiling system with steel panel used in Po-hang station showed failure examples of non-seismic design ceiling. In this study, the seismic performance of suspended ceiling with steel-panel, such as those used in Po-hang Station, was evaluated by shaking table tests. The shaking table tests were performed in accordance with the ICC-ES AC156 standard with floor acceleration being applied horizontally in one direction using a $3.3{\times}3.3m^2$ frame. The ceiling system consists of steel-panels, carrying channels, main and cross T-bars, and anti-falling clips. The anti-falling clip prevents the steel panel falling completely. The shaking table test confirmed that the damage at the previous stage had a direct impact on the damage state at the next stage. Through the shaking table test, the damage state of the T-bar type steel-panel suspended ceiling system was defined.

Confinement Effect Analysis Of Suction Pile In Ground Soil On The Basis Of Natural Frequency Measurement (고유진동수 기반 석션기초의 지반구속효과 분석)

  • Ryu, Moo Sung;Lee, Jun Shin;Lee, Jong Hwa;Seo, Yun Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2022
  • This paper presents the measuring process of dynamic properties of offshore wind power foundation and provides consideration of each step. This Guideline enables to maintain consistent measuring procedure and therefore increase the reliability of test results. Small scaled suction bucket foundation was fabricated to represent the commercial support structure installation mechanism and two cases(free-free, free-fixed) of dynamic tests were performed at workshop. From the tests, the importance of dynamic properties of connection part between suction bucket and tower was figured out. More over, types and configuration of measuring devices are recommended which can help find the natural frequency of wind turbine foundation correctly. In field test, it was found that the natural frequency of suction bucket foundation was increased linearly with the penetration depth due to the confining effect of ambient soil. Meanwhile, it was not easy to get an enough excitation force with normal impact hammer because the N.F of suction bucket model was in the lower range of 0 Hz ~ 5 Hz. Therefore, new excitation method which has enough force and can excite lower frequency range was devised. This study will help develop safety check procedure of suction bucket foundation in field at each installation stage using the N.F measurement.

Changes in bound water and microstructure during consolidation creep of Guilin red clay

  • Zhang, Dajin;Xiao, Guiyuan;Yin, Le;Xu, Guangli;Wang, Jian
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.471-478
    • /
    • 2022
  • Creep of soils has a significant impact on mechanical properties. The one-dimensional consolidation creep test, thermal analysis test, scanning electron microscope (SEM) test, and mercury compression test were performed on Guilin red clay to study the changes in bound water and microstructure during the creep process of Guilin red clay. According to the results of the tests, only free and weakly bound water is discharged during the creep of Guilin red clay. When the consolidation pressure p is in the 12.5-400.0 kPa range, it is primarily the discharge of free water; when the consolidation pressure p is in the 800.0-1600.0 kPa range, the weakly bound water is converted to free water and discharged. After consolidation creep, the microstructure of soil changes from granular overhead contact structure to flat sheet-like stacking structure, with a decrease in the number of large and medium pores, an increase in the number of small and micro pores, and a decrease in the fractal dimension of pores. The creep process of red clay is the discharge of weakly bound water as well as the compression of large pores into small pores and the transition of soil particles from loose to dense.