• Title/Summary/Keyword: impact tests

Search Result 1,771, Processing Time 0.026 seconds

Relationship between Normal Measurement and Error Rate of Output Voltage Linear Ratio of Seismic Accelerometer in Use (사용 중 지진 가속도계의 정상 측정과 출력전압 선형비 오차율 관계 분석)

  • Min-Jun Kim;Seong-Cheol Cho;Yong-Hun Jung;Jeong-Hun Won
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.65-74
    • /
    • 2024
  • We analyzed the relationship between the normal measurement of the seismic accelerometer (SA) and the error rate of the output voltage linear ratio to propose an evaluation method to determine whether the SA in use is measuring normally. Utilizing a test bed, the regular operation of SA in use was evaluated using acceleration data measured through impact tests since there are no regulations regarding performance testing of SA in use. For the used SA, the error rate of the output voltage linear ratio, which is a major performance criterion, was evaluated. We analyzed common characteristics of the SA that satisfied the impact test and the performance criteria of the output voltage linear ratio error rate. The results indicated that we must consider the decreasing trend and convergence of the error rate as the measurement angle increases, ensuring that the average value of the output voltage linear ratio error rate is within 1%.

Screening for Colorectal Neoplasias with Fecal Occult Blood Tests: False-positive Impact of Non-Dietary Restriction

  • Roslani, April Camilla;Abdullah, Taufiq;Arumugam, Kulenthran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.237-241
    • /
    • 2012
  • Objective: Screening for colorectal cancer using guaiac-based fecal occult blood tests (gFOBT) is well established in Western populations, but is hampered by poor patient compliance due to the imposed dietary restrictions. Fecal immunochemical tests (FIT) do not require dietary restriction, but are more expensive than gFOBT and therefore restrict its use in developing countries in Asia. However, Asian diets being low in meat content may not require diet restriction for gFOBT to achieve equivalent results. The objective of this study was to evaluate and compare the validity and suitability of gFOBT and FIT or a combination of the two in screening for colorectal neoplasias without prior dietary restriction in an Asian population. Methods: Patients referred to the Endoscopic Unit for colonoscopy were recruited for the study. Stool samples were collected prior to bowel preparation, and tested for occult blood with both gFOBT and FIT. Dietary restriction was not imposed. To assess the validity of either tests or in combination to detect a neoplasm or cancer in the colon, their false positive rates, their sensitivity (true positive rate) and the specificity (true negative rate) were analyzed and compared. Results: One hundred and three patients were analysed. The sensitivity for picking up any neoplasia was 53% for FIT, 40% for gFOBT and 23.3% for the combination. The sensitivities for picking up only carcinoma were 77.8%, 66.7% and 55.5%, respectively. The specificity for excluding any neoplasia was 91.7% for FIT, 74% for gFOBT and 94.5% for a combination, whereas for excluding only carcinomas they were 84%, 73.4% and 93.6%. Of the 69 with normal colonoscopic findings, FOBT was positive in 4.3%, 23.2 %and 2.9% for FIT, gFOBT, or combination of tests respectively. Conclusion: FIT is the recommended method if we are to dispense with dietary restriction in our patients because of its relatively low-false positivity and better sensitivity and specificity rates.

Analytical and experimental modal analyses of a highway bridge model

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, analytical and experimental modal analyses of a scaled bridge model are carried out to extract the dynamic characteristics such as natural frequency, mode shapes and damping ratios. For this purpose, a scaled bridge model is constructed in laboratory conditions. Three dimensional finite element model of the bridge is constituted and dynamic characteristics are determined, analytically. To identify the dynamic characteristics experimentally; Experimental Modal Analyses (ambient and forced vibration tests) are conducted to the bridge model. In the ambient vibration tests, natural excitations are provided and the response of the bridge model is measured. Sensitivity accelerometers are placed to collect signals from the measurements. The signals collected from the tests are processed by Operational Modal Analysis; and the dynamic characteristics of the bridge model are estimated using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods. In the forced vibration tests, excitation of the bridge model is induced by an impact hammer and the frequency response functions are obtained. From the finite element analyses, a total of 8 natural frequencies are attained between 28.33 and 313.5 Hz. Considering the first eight mode shapes, these modes can be classified into longitudinal, transverse and vertical modes. It is seen that the dynamic characteristics obtained from the ambient and forced vibration tests are close to each other. It can be stated that the both of Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are very useful to identify the dynamic characteristics of the bridge model. The first eight natural frequencies are obtained from experimental measurements between 25.00-299.5 Hz. In addition, the dynamic characteristics obtained from the finite element analyses have a good correlation with experimental frequencies and mode shapes. The MAC values obtained between 90-100% and 80-100% using experimental results and experimental-analytical results, respectively.

Innovation Capability and Sustainable Competitive Advantage: An Entrepreneurial Marketing Perspective

  • TEGUH, Sriwidadi;HARTIWI, Prabowo;RIDHO, Bramulya Ikhsan;BACHTIAR, Simamora H.;SYNTHIA, Atas Sari;NOOR, Hazlina Ahmad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.127-134
    • /
    • 2021
  • This study aims to determine the role of innovative capabilities as a mediator in analyzing entrepreneurial marketing's effect on sustainable competitive advantage in food and beverage micro-, small-, and medium- enterprises (MSMEs). Data was obtained from a food and beverage store manager in Tangerang City, comprising 119 samples. Furthermore, the G⁎Power, a tool used to calculate statistical power analysis for various t-tests, F tests, χ2 tests, z tests, and several exact tests, was used to determine the number of research samples, the α error probability of 5%, and 3 variables. The data collection method used questionnaires with Likert Scale 1-5 to indicate strongly disagree to strongly agree. To analyze data, we used Path Analysis supported by SmartPLS statistics software. Path analysis is a form of multiple regression statistical analysis that is used to evaluate causal models by examining the relationships between a dependent variable and two or more independent variables. It aims to provide estimates of the magnitude and significance of hypothesized causal connections between sets of variables. The data processing process took place in two stages, namely the estimation model testing with validity and reliability, and the structural model testing to decide the impact or correlation between variables utilizing the t-test. The result showed a positive and significant effect of entrepreneurial marketing to innovative capability and competitive advantage through the innovative capability of MSMEs.

Analysis of Dementia Tests Affecting the Diagnosis of Alzheimer's Disease (알츠하이머 치매 진단에 영향을 미치는 검사도구 분석)

  • Park, E-Rang;Kang, Gwang-Soon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.1
    • /
    • pp.181-189
    • /
    • 2021
  • The purpose of this study is to investigate the relationship between "Mental Status and Dementia Tests" and "predictive diagnosis of severity of dementia". This is a descriptive research, analyze the data collected from Alzheimer's patients and identify which "Mental Status and Dementia Tests" has the most impact to determine the severity of dementia. For this study, Alzheimer's patient's CDR, MMSE-K, SGDS, NPI-Q, BADL and IADL were collected and analyzed. This study will provide a predictive factor to determine the severity of dementia when "Mental Status and Dementia Testss" are being used and also to provide the right treatment. For this study, a total of 617 cases of data from Alzheimer's patients were collected and analyzed with SPSS Statistics. In addition, effective "Mental Status and Dementia Tests" for evaluating the severity of dementia were CDR, ADL, MMSE-K, and SGDS whereas NPI-Q and IADL. Based on the findings of the study, it was recommended to implement more efficient diagnostic method by utilizing a standardized "Mental Status and Dementia Tests".

Motion Analysis of Head and Neck of Human Volunteers in Low-Speed Rear Impact (저속 후방 추돌 자원자 실험을 통한 두부와 경부의 동작분석)

  • Hong, Seong Woo;Park, Won-Pil;Park, Sung-Ji;You, Jae-Ho;Kong, Sejin;Kim, Hansung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.37-43
    • /
    • 2012
  • The purpose of this research is to obtain and analyze dynamic responses from human volunteers for the development of the human-like mechanical or mathematical model for Korean males in automotive rear collisions. This paper focused on the introduction to a low-speed rear impact sled test involving Korean male subjects, and the accumulation of the motion of head and neck. A total of 50 dynamic rear impact sled tests were performed with 50 human volunteers, who are 30-50 year-old males. Each subject can be involved in only one case to prevent any injury in which he was exposed to the impulse that was equivalent to a low-speed rear-end collision of cars at 5-8 km/h for change of velocity, so called, ${\Delta}V$. All subjects were examined by an orthopedist to qualify for the test through the medical check-up of their necks and low backs prior to the test. The impact device is the pendulum type, tuned to simulate the crash pulse of a real vehicle. All motions and impulses were captured and measured by motion capture systems and pressure sensors on the seat. Dynamic responses of head and T1 were analyzed in two cases(5 km/h, 8 km/h) to compare with the results in the previous studies. After the experiments, human subjects were examined to check up any change in the post medical analysis. As a result, there was no change in MRI and no injury reported. Six subjects experienced a minor stiffness on their back for no more than 2 days and got back to normal without any medical treatment.

Effect of Rolling Conditions on Microstructure and Mechanical Properties of Thick Steel Plates for Offshore Platforms (해양플랜트용 후판강의 미세조직과 기계적 특성에 미치는 압연 조건의 영향)

  • Kim, Jongchul;Suh, Yonhchan;Hwang, Sungdoo;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.478-488
    • /
    • 2018
  • In this study, three kinds of steels are manufactured by varying the rolling conditions, and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone(HAZ) specimens are fabricated through the simulation of the welding process, and the HAZ microstructure is analyzed. The Charpy impact test of the HAZ specimens is performed at $-40^{\circ}C$ to investigate the low temperature HAZ toughness. The main microstructures of steels are quasi-polygonal ferrite and pearlite with fine grains. Because coarse granular bainite forms with an increasing finish rolling temperature, the strength decreases and elongation increases. In the steel with the lowest reduction ratio, coarse granular bainite forms. In the HAZ specimens, fine acicular ferrites are the main features of the microstructure. The volume fraction of coarse bainitic ferrite and granular bainite increases with an increasing finish rolling temperature. The Charpy impact energy at $-40^{\circ}C$ decreases with an increasing volume fraction of bainitic ferrite and granular bainite. In the HAZ specimen with the lowest reduction ratio, coarse bainitic ferrite and granular bainite forms and the Charpy impact energy at $-40^{\circ}C$ is the lowest.

A Study on the Energy Absorption Characteristics and Fracture Mode of CFRP Laminate Members under Axial Compression (축압축을 받는 CFRP 적층부재의 에너지흡수특성과 파괴모드에 관한 연구)

  • 김정호;정회범;전형주
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.7-12
    • /
    • 2002
  • The object of this paper is to investigate collapse characteristics of CF/Epoxy(Carbon Fiber/Epoxy resin) composite tubes on the change of interlaminar number and fiber orientation angle of outer and to evaluate reappearance of collapse characteristics on the change of tension strength of fibers under static and impact axial compression loads. When a CF/Epoxy composite tube is mushed, static/impact energy is consumed by friction between the loading plate and the splayed fiends of the tube, by fracture of the fibers, matrix and their interface. In general, CF/Epoxy tube with 6 interlaminar number(C-type) absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CF/Epoxy tubes and loading status(static/impact). Typical collapse modes of CF/Epoxy tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shorn in case of CF/Epoxy tubes with 0$^{\circ}$ orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CF/Epoxy tubes with 90$^{\circ}$ orientation angie or outer under static loadings, however in impact tests those were collapsed in fragmentation mode. So that CF/Epoxy tube with 6 interlaminar number and 90$^{\circ}$ outer orientation angle presented to the optimal collapse characteristics.

Fracture properties and tensile strength of three typical sandstone materials under static and impact loads

  • Zhou, Lei;Niu, Caoyuan;Zhu, Zheming;Ying, Peng;Dong, Yuqing;Deng, Shuai
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.467-480
    • /
    • 2020
  • The failure behavior and tensile strength of sandstone materials under different strain rates are greatly different, especially under static loads and impact loads. In order to clearly investigate the failure mechanism of sandstone materials under static and impact loads, a series of Brazilian disc samples were used by employing green sandstone, red sandstone and black sandstone to carry out static and impact loading splitting tensile tests, and the failure properties subjected to two different loading conditions were analyzed and discussed. Subsequently, the failure behavior of sandstone materials also were simulated by finite element code. The good agreement between simulation results and experimental results can obtain the following significantly conclusions: (1) The relationship of the tensile strength among sandstone materials is that green sandstone < red sandstone < black sandstone, and the variation of the tensile sensitivity of sandstone materials is that green sandstone > red sandstone > black sandstone; (2) The mainly cause for the difference of dynamic tensile strength of sandstone materials is that the strength of crystal particles in sandstone material, and the tensile strength of sandstone is proportional to the fractal dimension; (3) The dynamic failure behavior of sandstone is greatly different from that of static failure behavior, and the dynamic tensile failure rate in dynamic failure behavior is about 54.92%.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations

  • Liu, X.;Wu, H.;Qu, Y.G.;Xu, Z.Y.;Sheng, J.H.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.381-396
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part I, finite element (FE) models establishment and validations for both the aircrafts and NPP buildings are performed. (i) Airbus A320 and A380 aircrafts are selected as the representative medium and large commercial aircrafts, and the corresponding fine FE models including the skin, beam, fuel and etc. are established. By comparing the numerically derived impact force time-histories with the existing published literatures, the rationality of aircrafts models is verified. (ii) Fine FE model of the Chinese Zhejiang Sanao NPP buildings is established, including the detailed structures and reinforcing arrangement of both the containment and auxiliary buildings. (iii) By numerically reproducing the existing 1/7.5 scaled aircraft model impact tests on steel plate reinforced concrete (SC) panels and assessing the impact process and velocity time-history of aircraft model, as well as the damage and the maximum deflection of SC panels, the applicability of the existing three concrete constitutive models (i.e., K&C, Winfrith and CSC) are evaluated and the superiority of Winfrith model for SC panels under deformable missile impact is verified. The present work can provide beneficial reference for the integral aircraft crash analyses and structural damage assessment in the following two parts of this paper.