• Title/Summary/Keyword: impact tests

Search Result 1,771, Processing Time 0.034 seconds

Impact of Blockchain Technology on Maritime Transport in the Shipping Industry

  • Byun, Sang-phil;Oh, Jeong-Hun
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.4
    • /
    • pp.53-61
    • /
    • 2021
  • Purpose - The purpose of this paper is to assess the empirical evidence that shows blockchain technology has been a significant contributor to the growth of maritime transport in the shipping industry. Design/methodology/approach - Employing a generalized linear model using data from 2010 to 2019, this paper presents empirical evidence to demonstrate the positive impact of the adoption of blockchain technology on the maritime transport industry. Findings - Results from Granger causality tests confirm that there is a positive unidirectional causality from blockchain technology to maritime transport. This paper also demonstrates the positive effects of information technology (IT) and GDP growth on maritime transport. On the other hand, maritime transport is negatively influenced by the tax burden. Research implications or Originality - The results of this paper suggest a potential sustainable development strategy for the maritime transport industry involving the redirection of economic resources toward blockchain technology. Adopting other forms of IT and reducing the tax burden are also useful strategies for the development of the industry.

Resistance of concrete made of fibers in weight lifting slabs against impact in sports training

  • Zhi Li
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.325-336
    • /
    • 2023
  • A significant component of many civil constructions such as buildings, reservoirs, bridges, and sports halls, concrete has become increasingly popular due to its versatile properties. Concrete's internal characteristics change due to the use of different types of fibers, including changes in its microstructure, volume, and hole dimensions. Additionally, the type, dimensions, and distribution of fibers in concrete can affect the results of flexural strength tests by affecting its compressive and tensile strength. Due to a lack of information, fiber concrete is a new composite material in the production industry that requires laboratory studies to determine its behavior. This study investigated the bending behavior of multilayer slabs made of concrete reinforced by polyamide-propylene fibers against impact in weight lifting exercises. Results showed that adding fibers to concrete slab samples improved the mechanical properties while replacing them hurt the mechanical properties and failure of polymer fiber-reinforced concrete. On the other hand, adding and replacing fibers increases durability and has a positive effect.

The structural and non-linear dynamic analysis for radioactive waste container

  • Yu-Yu Shen;Kuei-Jen Cheng;Hsoung-Wei Chou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3010-3016
    • /
    • 2023
  • In recent years, the development of radioactive waste containers for nuclear facility decommissioning and dismantling is a critical issue because the Taiwan domestic boiling water reactor nuclear power plant is going to be decommissioned. The main purpose of this research is to design a metal container that meets the structural requirements of related regulations. At first, the shielding analysis was performed by varying dimensions of radioactive waste to determine the storage efficiency of the container. Then, a series of structural analyses for operational and accidental conditions of the container with full load were conducted, such as lifting, stacking, and drop impact conditions. On the other hand, the field drop impact tests were carried out to ensure structural integrity. The present research demonstrates the structural safety of the developed container for decommissioned nuclear facilities in Taiwan.

Measuring the Impact of Change Orders on Project Performances by Building Type

  • Juarez, Marcus;Kim, Joseph J.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.179-187
    • /
    • 2022
  • The project performances can be measured in terms of meeting the project schedule, budget, and conformance to functional and technical specifications. Numerous studies have been conducted to examine the causes and effects of change orders for both vertical and horizontal construction, respectively. However, these studies mainly focus on a single project type, so this paper examines the impact of change order for cost growth and schedule overruns using four different building types to close the gap in the change order research area. A total of 211 building projects are collected from four building types: healthcare, residential, office, and education. Statistical analyses using ANOVA tests and linear regression models are used to examine the created metric $CO/day on the cost and schedule impacts. The results found that mean $CO/day values were not statistically different among building types, and that the sum of change orders is a statistically significant predictor of $CO/day. The results will help project stakeholders mitigate the negative change orders effects can be a challenge for project managers and researchers alike.

  • PDF

The Nexus between Urbanization, Gross Capital Formation and Economic Growth: A Study of Saudi Arabia

  • KHAN, Uzma
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.677-682
    • /
    • 2020
  • To investigate the nexus between urban population, gross capital formation, and economic growth in the Kingdom of Saudi Arabia, yearly data was collected from the World Bank for the period 1974- 2018. Basic statistics test and correlation matrix was used to investigate the causal effect among the tested parameters, followed by Augmented Dickey-Fuller (ADF) stationary test, co-integration analysis by Johansen test after that Vector Auto-Correction Model for both short-run and long-run and finally the Granger-Causality tests. Result of unit root test analysis shows that the urban population became stationary at I (0) level while economic growth and gross capital formation became stationary at I (1). Johansen co-integration analysis indicates that there is presence of both long-run and short-run relationship between the three variables in the Kingdom of Saudi Arabia. The result of the VECM Model reflects that both economic growth and gross capital formation have a negative impact on urban population in the short run. According to the Granger-Causality tests, there is unidirectional causality with the urban population by both gross capital formation and economic growth. Also, the result of the Granger Causality tests show that there is unidirectional causality between economic growth and gross capital formations.

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.

A Study on the ballistic performance and fracture mode of anodized Aluminum 5052-H34 alloy laminates (알루미늄 5052-H34 합금 적층재의 방탄성능과 파괴모드에 관한 연구)

  • 손세원;김희재;박영의;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.507-512
    • /
    • 2000
  • The ob.jective of this study is to determine fracture behaviors(penetrati0n modes) and resistance to penetration duringballistic impact of Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates. Resistance to penetration is determined by $V_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed that result from V50 test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with 0" obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with 0" obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of A1 5052-H34 alloy laminates compared to those of anodized Al 5052-H34 alloy laminates.y laminates.

  • PDF

The Fretting Fatigue Behavior of Ti-6Al-4V Alloy on Change of Microstructure (Ti-6Al-4V 합금의 조직 변화에 따른 프레팅 피로거동)

  • Bae Yong Tak;Choi Sung long;Kwon Jae Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.584-590
    • /
    • 2005
  • The effect of microstructure on mechanical behavior for Ti-6Al-4V alloy was studied. Two different kinds of specimens are prepared using heat treatments (rolled plate, $1050^{\circ}C)$ in order to Produce different microstructures. Various kinds of mechanical tests such as hardness, tensile, fatigue and fretting fatigue tests are performed for evaluation of mechanical properties with the changes of microstructures. Through these tests, the following conclusions are observed: 1) Microstructures are observed as equiaxed and $widmanst{\ddot{a}}ten$ microstructures respectively. 2) Impact absorbed energy is superior for the equiaxed microstructure, and the hardness and tensile strength are superior for the $widmanst{\ddot{a}}ten$ microstructure. 3) The fatigue endurance of $widmanst{\ddot{a}}ten$ microstritcture shows higher value than that of the equiaxed microstructure. 4) The fatigue endurance in fretting condition was reduced about $50{\%}$ from that of the non-fretting condition.

Study on Work-Efficiency in feild of PFB(POSCO E&C Fire Board) for High Sterength Concrete Spalling Control (고강도콘크리트 폭열 방지공법(PFB 공법)의 현장 적용성 평가에 관한 연구)

  • Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.173-176
    • /
    • 2008
  • There are researches are in progress on ensuring the safety of the high impact concrete in cases of fire which is a current rising social problem and this research institute also developed PFB technology, the explosion preventing technology. PFB technology is to apply POSCO E&C Fire Board, a fireproof board, with an adhesive agent on the construction site, and this technology passed 3-hour fireproof test and this technology was proven from a previous research that the temperature of main root is maintained under 200 ℃. Therefore, tests on basic contents to be examined before the actual construction in this research by with a wooden prototype of a full scale to apply PFB technology to actual construction sites and tests are being done on the workability of fireproof board, the adhesive power, the resistance against imprint of wooden nail, the heat conductivity and etc. As the results of those tests, PFB technology was proven to have an excellent workability at a construction site and to be easy for processing and also this technology was proven to have a great the resisting power against imprint of wooden nail, so this research has confirmed that PFB technology has no problem to be applied on a construction site.

  • PDF

An Effect of surface treatment on a Protection Ballistic Limits in armor material (표면처리가 장갑재료의 방호한계에 미치는 영향)

  • 손세원;김희재;이두성;홍성희;유명재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.126-134
    • /
    • 2003
  • In order to investigate the effect of surface treatment in Aluminium alloy and Titanium alloy which are used to armor material during ballistic impact, a ballistic testing was conducted. Anodizing was used to achieve higher surface hardness of Aluminium alloy and Iron plating in PVD(Physical Vapor Deposition) method was used to achieve higher surface hardness of Titanium alloy. Surface hardness test were conducted using a Micro victor's hardness tester. Ballistic resistance of these materials was measured by protection ballistic limit(V-50), a statical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed from the results of V-50 test and Projectile Through Plates (PTP) test at velocities greater than V-50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V-50 tests were conducted with 0$^{\circ}$obliquity at room temperature with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration. and penetration modes of surface treated alloy laminates are compared to those of surface non-treated alloy laminates. A high speed photography was used to analyze the dynamic perforation phenomena of the test materials.