• 제목/요약/키워드: impact range

검색결과 1,728건 처리시간 0.029초

벼의 충격(衝擊) 특성(特性)에 관한 연구(硏究) (Measurements of Mechanical Behavior of Rough Rice under Impact Loading)

  • 차재윤;고학균;노상하;김만수;김용현
    • Journal of Biosystems Engineering
    • /
    • 제14권3호
    • /
    • pp.207-214
    • /
    • 1989
  • In this study, impact force and angular displacement of the pendulum were measured by the load cell and potentiometer. Mechanical behavior of rough rice under impact loading was able to analyze precisely and efficiently, because measured data were accumulated and handled by the automatic data acquisition system making use of microcomputer system. Impact force and angular displacement were measured with a resolutiln of 1/1500 seconds in time. Mechanical behavior such as force and energy at rupture point of Japonica type and Indica type rough rice were measured with this system. After impact loading, the damage of rough rice was examined with the microphotograph and an allowable impact force was measured. The results obtained in this study are summarized as follows. 1. Machanical behavior of rough rice under impact loading was analyzed precisely and efficiently because measured data were accumulated and handled by this data acquisition system. 2. Rupture force and rupture energy of rough rice were appeared to be the lowest value in the range of 16 to 18 % moisture content, and rupture force and rupture energy of Japonica type were higher than those of Indica type in each level of moisture content. 3. From the result of the damage examined after the impact loading, allowable impact force was the lowest in the range of 16 to 18 % moisture content, and the value of the allowable impact force of Japonica type was higher than that of Indica type in each level of moisture content.

  • PDF

Optimum stiffness values for impact element models to determine pounding forces between adjacent buildings

  • Jaradat, Yazan;Far, Harry
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.293-304
    • /
    • 2021
  • Structural failure due to seismic pounding between two adjacent buildings is one of the major concerns in the context of structural damage. Pounding between adjacent structures is a commonly observed phenomenon during major earthquakes. When modelling the structural response, stiffness of impact spring elements is considered to be one of the most important parameters when the impact force during collision of adjacent buildings is calculated. Determining valid and realistic stiffness values is essential in numerical simulations of pounding forces between adjacent buildings in order to achieve reasonable results. Several impact model stiffness values have been presented by various researchers to simulate pounding forces between adjacent structures. These values were mathematically calculated or estimated. In this study, a linear spring impact element model is used to simulate the pounding forces between two adjacent structures. An experimental model reported in literature was adopted to investigate the effect of different impact element stiffness k on the force intensity and number of impacts simulated by Finite Element (FE) analysis. Several numerical analyses have been conducted using SAP2000 and the collected results were used for further mathematical evaluations. The results of this study concluded the major factors that may actualise the stiffness value for impact element models. The number of impacts and the maximum impact force were found to be the core concept for finding the optimal range of stiffness values. For the experimental model investigated, the range of optimal stiffness values has also been presented and discussed.

Impact location on a stiffened composite panel using improved linear array

  • Zhong, Yongteng;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.173-182
    • /
    • 2019
  • Due to the degradation of beamforming properties at angles close to $0^{\circ}$ to $180^{\circ}$, linear array does not have a complete $180^{\circ}$ inspection range but a smaller one. This paper develops a improved sensor array with two additional sensors above and below the linear sensor array, and presents time difference and two dimensional multiple signal classification (2D-MUSIC) based impact localization for omni-directional localization on composite structures. Firstly, the arrival times of impact signal observed by two additional sensors are determined using the wavelet transform and compared, and the direction range of impact source can be decided in general, $0^{\circ}$ to $180^{\circ}$ or $180^{\circ}$ to $360^{\circ}$. And then, 2D-MUSIC based spatial spectrum formula using uniform linear array is applied for locate accurate position of impact source. When the arrival time of impact signal observed by two additional sensors is equal, the direction of impact source can be located at $0^{\circ}$ or $180^{\circ}$ by comparing the first and last sensor of linear array. And then the distance is estimated by time difference algorithm. To verify the proposed approach, it is applied to a quasi-isotropic epoxy laminate plate and a stiffened composite panel. The results are in good agreement with the actual impact occurring position.

현장 중심의 화학테러·사고 대응을 위한 피해 영향 범위 평가 개선 방안 연구 (A Study on Improvement of Damage Impact Range Assessment for Field-Based Response Against Chemical Terrorism and Accidents)

  • 이덕재;송창근
    • 융합정보논문지
    • /
    • 제10권8호
    • /
    • pp.127-136
    • /
    • 2020
  • 화학물질을 이용한 화학테러·사고는 국내·외에서 지속해서 발생, 시도되는 추세이다. 국내의 경우, 환경부 화학물질안전원에서 CARIS(Ver. 2018)를 화학테러·사고 발생지역의 피해 영향 범위 평가 용도로 제공하여 현장 대응에 활용하고 있다. 하지만 현행 CARIS는 실내, 지하 등과 같은 폐쇄된 공간에 대한 영향을 고려하지 못하여 현장에서 요구하는 정밀한 피해 영향 범위 평가 결과를 제공하는데 어려우며 제공되는 정보도 제한적이다. 본 연구에서는 CARIS(Ver. 2018)를 구동하여 획득한 피해 영향 범위 평가 결과와 국내·외 문헌 자료를 비교, 검토하여 제한사항과 개선 방향을 제시하였다. 또한 지하, 실내 등 특수 지점, 지역에 대한 구동 모델 구축의 필요성과 현장 대응 요원 등 포함한 주민에게 제공되는 정보의 방향성을 제안하였다. CARIS의 보완과 수정에 있어 본 연구에서 제안한 방법이 반영된다면 더욱 진보된 화학테러·사고 현장 대응 역량 체계 구축이 될 것으로 기대한다.

댐이 하류하천에 미치는 영향권 산정에 관한 연구 (A Study on the Impact Range Calculation at the Downstream of Dam)

  • 박봉진;김현식;정관수;지홍기
    • 한국수자원학회논문집
    • /
    • 제41권10호
    • /
    • pp.1009-1021
    • /
    • 2008
  • 본 연구에서는 댐이 하류하천에 미치는 영향권을 산정하기 위하여 수리 수문적, 지형적, 환경 생태적, 사회적 영향의 4개 지표와 38개 항목을 선정하고, 계층분석법을 적용하여 댐의 영향권 산정 지표와 항목의 중요도를 평가하였다. 댐 영향권 산정 지표의 평가결과는 수리 수문적 영향권이 1순위, 환경 생태적 영향권이 2순위, 지형적 영향권 및 사회적 영향권이 각각 3순위와 4순위 이었으며, 항목의 평가결과는 댐설계방류량이 1순위, 하천의 기본 및 계획홍수량이 2순위, 계획홍수량비가 3순위, 유역면적비가 4순위, 하류댐 배수위가 5순위로 평가되었다. 대청댐의 영향권을 산정한 결과, 댐설계방류량 지표는 47.21 km, 하천계획홍수량 지표는 45.71 km, 유역면적비 지표는 13.94 km로 산정되었다.

소총의 상하향 사격시 탄도학상의 수직편차 (The Vertical Deviation of the Impact Point from and Aiming Point at an Inclined shooting Ranges)

  • 이흥주;장원홍
    • 대한기계학회논문집
    • /
    • 제2권2호
    • /
    • pp.47-51
    • /
    • 1978
  • In order to improve the hitting rate in the shot of rifles, it is required that the analysis of exterior ballistics and the line of sight. One of the important factors influenced a marksman using a rifle obtained the zero-setting of a rifle at the horizontal range, is the deviation of the impact point from the aiming point when the shooting is performed in an inclined ranges. The deviation usually cccurs from the reaction force along the bore line, the characteristics of exterior ballistics, and the error of a shooting range judgement by the inclined range. This study is concerned with the problem of the vertical difference between the impact and aiming point in the inclined shooting ranges. The computing method to find the vertical difference is represented. This method is applied for and experimental rifle in three cases, (1) hofizontal shooting ranges, (2) upper inclined shooting ranges, and (3) lower inclined shooting ranges.

Impact Behavior Analysis of Mechanical Monoleaflet Heart Valve Prostheses in the Opening Phase

  • Cheon, Gill-Jeong;Chandran, K.B.
    • 대한의용생체공학회:의공학회지
    • /
    • 제13권3호
    • /
    • pp.235-244
    • /
    • 1992
  • In this paper, fluttering behavior of mechanical monoleaflet tilting disc heart valve prostheses during the opening phase was analyzed taking into consideration the impact between the occluder and the guiding strut at the fully open position. The motion of the valve occluder was modeled as a rotating system, and equations were derived by employing the moment equilibrium principle. Forces due to lift, drag, gravity and buoyancy were considered as external forces acting on the occluder. The 4th order Runge-Kutta method was used to solve the governing equations. The results iimonstrated that the occludes reaches steady equilibrium position only after damped vibration. Fluttering frequency varies as a function of time after opening and is in the range of 8-84 Hz. Valve opening appears to be affected by the orientation of the valve relative to gravitational force. The opening velocities are in the range of 0.65-1.42m/sec and the dynamic loads by impact of the occludes and the strut are in the range of 90-190 N.

  • PDF

충격 해머의 感度補正 (On the Calibration of Impact Hammer Sensitivity)

  • 한상보
    • 소음진동
    • /
    • 제1권2호
    • /
    • pp.115-120
    • /
    • 1991
  • The impact hammer is extensively used in experimental modal analysis as a means to provide force over a broad range of frequencies. The hammer mass and the impact head are often changed to achieve a desired impact time duration with its corresponding input frequency spectrum, these mass changes affect the performance and sensitivity of the force transducer employed to measure the impact force. Both a mathematical model describing the effects of impact head and hammer mass on the performance of the force transducer and experimental verification of this model are presented here.

  • PDF

콘크리트 슬래브와 바닥 상부구조가 일체된 바닥구조의 바닥충격음 (Floor Impact Noise Level for Concrete Slab Integrated with Floor Finishing Layers)

  • 문대호;오양기;정갑철;박홍근
    • 한국소음진동공학회논문집
    • /
    • 제26권2호
    • /
    • pp.130-140
    • /
    • 2016
  • Floating floor is most commonly used at apartment houses in Korea for thermal insulation and reducing impact noise. But it in proven that the floating floor is not effective for reducing the floor impact noise in low frequency range. In most cases, impact sound pressure level under 63 Hz frequency band were actually increased by the resonance of resilient material, lightweight concrete and the finishing mortar installed on it. In this paper, an integrated floor system consist of 70 mm light weight concrete and 40 mm finishing mortar successively installed on the concrete slab was suggested to avoid the resonance. Integrated floor system increases total flexural stiffness and mass per unit area. The natural frequencies of first and second vibration mode were increased and acceleration response and floor impact sound level was decreased in all measurement range.

감자와 고구마의 충격 및 압축 특성에 관한 연구 (Mechanical Behavior of Potato and Sweet Potato under Impact and Compression Loading)

  • 홍지향;김창수;김재열;김진현;최중섭;정종훈;박장우
    • Journal of Biosystems Engineering
    • /
    • 제31권4호
    • /
    • pp.369-375
    • /
    • 2006
  • Mechanical properties of potato and sweet potato were measured under impact and compression loading. The test apparatus consisted of disgital storage oscilloscope and simple mechanisms which can apply compression and impact forces to potatoes and sweet potatoes. The mechanical properties could be measured while the tissues were ruptured in a very short period time less than 10 ms by impact loading. Rupture force, energy, and deformation were measured as mechanical properties of potatoes and sweet potatoes under impact and compression loading. Rupture forces under impact and compression loading were in the range of 84.1 to 93.7N and 128.9 to 132.2N for external tissues and 60.1 to 64.8N and 158.9 to 171.1N for internal tissues of potato and sweet potato, respectively. Compression speeds and drop heights for each test were in the range of 1.25 to 62.5mm/min and 8 to 24cm.