• Title/Summary/Keyword: impact loads

Search Result 723, Processing Time 0.027 seconds

Impact of Picture and Reading Mode on Cognitive Load and Galvanic Skin Response (그림 자료의 제시여부와 읽기모드에 따른 인지부하와 GSR의 차이)

  • Ryu, Jee-Heon
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.21-32
    • /
    • 2010
  • This study investigated the effects of contiguity and reading mode on cognitive load factors measured by Galvanic Skin Response(GSR). In this study two experimental conditions were imposed to participants to measure cognitive load with the high contiguity picture and low contiguity picture. Thirty-four college students participated to this experiment(experiment group=17, control group=17), and spilt-plot factorial design was applied to control individual difference in galvanic skin response. Tasks of this experiment were reading and summary. The dependent variables were skin conductance response, and perceived difficulty. The independent variables were the degree of contiguity of visual material(high contiguity vs. low contiguity). The major result of this study was identification of a significant difference of GSR with low contiguity condition. Indeed it was identified that more complex reading condition required more cognitive loads. This finding supported that different cognitive process might require different amounts of cognitive loads. For the further research, this study discussed the validity of applying physiological signals to assess cognitive loads and relationships the associated affective reactions.

  • PDF

Life Cycle Assessments and Effect Factors in the Planning Stage of Steel Bridge (강교량의 기획단계에서의 환경부하 평가 및 영향요인에 관한 연구)

  • Jeon, Min Yeong;Kyung, Kab Soo;Lee, Sung Jin;Ryu, Seong Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • Recently, interest for environmental pollution in various fields is on the increase, and the researches on the life cycle assessment of environmental performance assessment method for calculating the environmental loads are currently most performed. It is expected to have a significant influence on the environment, since SOC infrastructures are go through a variety of materials, manufacturing process, however it is judged that researches and measures for environmental pollution is insufficient. In this study, we build the data for 204 of steel bridge designed after 2000 year, and the 100 of bridge which were selected to from obtained results were calculated the environmental loads at the planning stage based on the life cycle assessment. In addition, standard classification systems in work type for steel bridges were established. Based on this, the basic design data and input materials for the bridges are applied to the LCI DB, and the environmental load for required material is evaluated and is shown as Eco-point. Environmental loads obtained from this study, it is judged that can be utilized as a basic data for the process of the life cycle assessment in future steel bridge design.

Analysis of Effects of Reshoring Works on Short and Long Term Deflections of Flat Plates (플랫 플레이트 구조의 장단기 처짐 제어에 대한 동바리 재설치 작업의 효과 분석)

  • Kim, Jae-Yo;Park, Soo-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2017
  • RC flat plates may be governed by a serviceability as well as a strength condition, and a construction sequence and its impact on the distributions of gravity loads among slabs tied by shores are decisive factors influencing short and long term behaviors of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, and a reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of loads in a multi-shored flat plate system. In this study, a effect of reshoring works on short and long term deflections of flat plate systems are analyzed. The slab construction loads with various reshoring schemes and slab design and construction conditions are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking and long term effects is applied. From parametric studies, the reshoring works are verified to reduce slab deflections, and the optimized conditions for the reshoring works and slab design and constructions are discussed.

Dynamic Structural Response Characteristics of Stiffened Blast Wall under Explosion Loads (폭발 하중을 받는 보강된 방폭벽의 동적 구조 응답 특성에 관한 연구)

  • Kim, Sang Jin;Sohn, Jung Min;Lee, Jong Chan;Li, Chun Bao;Seong, Dong Jin;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.380-387
    • /
    • 2014
  • Piper Alpha disaster drew attention to the damage likely to arise from explosions and fires on an offshore platform. And great concerns have been increased to prevent these hazards. Blast wall is one of the passive safety systems; it plays a key part of minimizing the consequences. However, a buckling due to explosion loads is a factor which can reduce the strength of blast wall. The buckling often occurs between web and flange at the center of blast wall. This study aims to find a solution for reinforcing its strength by installing a flat plate at the spot where the buckling occurs. First of all, ANSYS finite element method is adopted to numerically compute the structural resistance characteristic of blast wall by using a quasi-static approach. Sequentially, the impact response characteristics of blast wall are investigated the effect on thickness of flat plate by using ANSYS/LS-DYNA. Finally, pressure-impulse diagrams (P-I diagram) are presented to permit easy assessment of structural response characteristics of stiffened blast wall. In this study, effective use is made to increase structural intensity. of blast wall and acquired important insights have been documented.

A Study on Analysis of Real Response of Steel Railway Bridges (강철도교의 실응답해석에 관한 연구)

  • Chang, Dong Il;Choi, Kang Hee;Lee, Hee Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.43-54
    • /
    • 1989
  • In this paper, measured and calculated responses are compared in order to give how the static and dynamic responses occurred in steel railway bridges due to train loads could be calculated appropriately. From this, it is investigated how the impact factors are varied by changing the train speed above 100km/h Field measurement is carried out by the steel strain gages and displacement transducers at the main design points, and then the static and dynamic response, fundamental frequencies, damping ratios and impact factors of the bridges are obtained. Static analysis is done using the computer program developed according to three dimensional matrix structural analysis in which the trains and bridges are modelled as 1,2 and 3 dimensions. Dynamic analysis is done according to 2 approaches, the moving force and mass problem. In moving force problem, the solutions are obtained by the modesuperposition-method and in moving mass problem by the direct integration method. From this study, it is known that in order to obtain the static response in the railway bridges, the bridge could be modelled by 1 or 2 dimension as in the highway bridge, however the response ratio(measured/calculaled) is high comparing to the highway bridges. By the way, the dynamic response should be obtained by the moving mass problem. And by comparing the measured and code specified impact factors, it is known that the factors specified in the present railway bridge code are very safe under the present service speed below 100km/h. However, because the factors become very high under the speed above 100km/h, especially in the simple plate girder bridge, it is thought that the code specification on impact factor should be discussed enough under the rapid transit system.

  • PDF

Reliability Assessment of Impact Tensile Testing Apparatus using a Drop-bar Striker for Intermediate Strain-rate Range and Evaluation of Dynamic Deformation Behaviors for a Carbon Steel (중간 변형률속도용 낙추식 충격 인장시험 장치의 신뢰성 확보 및 탄소강의 동적변형거동 평가)

  • Bae, Kyung Oh;Kim, Dae Woong;Shin, Hyung Seop;Park, Lee Ju;Kim, Hyung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.573-579
    • /
    • 2016
  • Studies on the deformation behavior of materials subjected to impact loads have been carried out in various fields of engineering and industry. The deformation and fracture of members for these machines/structures are known to correspond to the intermediate strain-rate region. Therefore, for the structural design, it is necessary to consider the dynamic deformation behavior in these intermediate strain-rate ranges. However, there have been few reports with useful data about the deformation and fracture behavior at intermediate strain-rate ranges. Because the intermediate strain-rate region is located between quasi-static and high strain-rate regions, it is difficult to obtain the intermediate strain-rate using conventional reasonable test equipment. To solve this problem, in this study, the measurement reliability of the constructed drop-bar impact tensile test apparatus was established and the dynamic behavior at the intermediate strain-rate range of carbon steels was evaluated by utilizing the apparatus.

A Study on Impact of Public Sewage Treatment Works Affecting Water Qualities of the Lake Uiam in Chuncheon City (춘천시 공공하수처리시설의 방류수가 의암호 수질에 미치는 영향 고찰)

  • Jeong, Donghwan;Cho, Yangseok;Choi, Incheol;Ahn, Kyunghee;Chung, Hyenmi;Kwon, Ohsang
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.406-416
    • /
    • 2014
  • When abnormal taste and odor were detected in the tap water of the North-Han river watershed during the dry season in late 2011, excessive nutrients with algal growth in the Lake Uiam and weather factors were considered to be among its causes. The nutrients, in particular, originated from domestic sewage in the Chuncheon area. This study was conducted to investigate relations between the algal growth in the Lake Uiam and the contribution of nutrients from public sewage treatment works (PSTWs) in Chuncheon city, and based on this to analyze the environmental impact. Nutrients in the Lake Uiam have already been accumulated to the level of eutrophication. Even in winter, the conditions in the lake such as retention time and water temperature were favorable to boost algal growth. After phosphorus treatment processes were introduced, the PSTWs in the Lake Uiam watershed were able to reduce the total phosphorus loads by 43%. The algal concentrations in the Lake Uiam also dropped by about 7%. The nitrogen treatment efficiencies in the PSTWs, on the other hand, remained almost the same after the introduction of the phosphorus treatment processes. To solve these problems more efficiently, it is necessary to develop management strategies for the upstream area of the Lake Uiam and set plans to improve nitrogen treatment operation and management for the PSTWs in Chuncheon.

Sloshing suppression by floating baffle

  • Kang, Hooi-Siang;Md Arif, Ummul Ghafir;Kim, Kyung-Sung;Kim, Moo-Hyun;Liu, Yu-Jie;Lee, Kee-Quen;Wu, Yun-Ta
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.409-422
    • /
    • 2019
  • Sloshing is a phenomenon which may lead to dynamic stability and damages on the local structure of the tank. Hence, several anti-sloshing devices are introduced in order to reduce the impact pressure and free surface elevation of liquid. A fixed baffle is the most prevailing anti-sloshing mechanism compared to the other methods. However, the additional of the baffle as the internal structure of the LNG tank can lead to frequent damages in long-term usage as this structure absorbs the sloshing loads and thus increases the maintenance cost and downtime. In this paper, a novel type of floating baffle is proposed to suppress the sloshing effect in LNG tank without the need for reconstructing the tank. The sloshing phenomenon in a membrane type LNG tank model was excited under sway motion with 30% and 50% filling condition in the model test. A regular motion by a linear actuator was applied to the tank model at different amplitudes and constant period at 1.1 seconds. Three pressure sensors were installed on the tank wall to measure the impact pressure, and a high-speed camera was utilized to record the sloshing motion. The floater baffle was modeled on the basis of uniform-discretization of domain and tested based on parametric variations. Data of pressure sensors were collected for cases without- and with-floating baffle. The results indicated successful reduction of surface run-up and impulsive pressure by using a floating baffle. The findings are expected to bring significant impacts towards safer sea transportation of LNG.

Impact of Design Parameters on Length and Application Effect of Surface Water Heat Exchanger(SWHE) (지표수 열교환기의 용량과 적용 효과에 대한 설계 인자의 영향)

  • Sohn, Byonghu;Min, Kyong-Chon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • Commercial buildings are generally cooling-dominated and therefore reject more heat to a vertical ground heat exchanger(GHE) than they extract over the annual cycle. Shallow ponds can provide a cost-effective means to balance the thermal loads to the ground and to reduce the length of GHE. The objective of this work has been to develop a design tool for surface water heat exchanger(SWHE) submerged in shallow pond. This paper presents the analysis results of the impact of design parameters on the length of SWHE and its application effect on geothermal heat pump(GHP) system using vertical GHE. In order to analysis, We applied ${\epsilon}-NTU$ method on designing the length of SWHE. Analysis results show that the required pipe length of SWHE was decreased with the increase of approach temperature difference and with the decrease of pipe wall thickness. In addition, when the SWHE was applied to the GHP system, the temperature of vertical GHE was more stable than that of standalone GHE system.

Structural Evaluation on HIC Transport Packaging under Accident Conditions (HIC 운반용기의 사고조건에 대한 구조평가)

  • Chung Sung-Hwan;Kim Duck-Hoi;Jung Jin-Se;Yang Ke-Hyung;Lee Heung-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.231-236
    • /
    • 2005
  • HIC transport packaging to transport a high integrity container(HIC) containing dry spent resin generated from nuclear power plants is to comply with the regulatory requirements of Korea and IAEA for Type B packaging due to the high radioactivity of the content, and to maintain the structural integrity under normal and accident conditions. It must withstand 9 m free drop impact onto an unyielding surface and 1 m drop impact onto a mild steel bar in a position causing maximum damage. For the conceptual design of a cylindrical HIC transport package, three dimensional dynamic structural analysis to ensure that the integrity of the package is maintained under all credible loads for 9 m free drop and 1 m puncture conditions were carried out using ABAQUS code.

  • PDF