• Title/Summary/Keyword: impact loads

Search Result 723, Processing Time 0.031 seconds

Evaluation of Non-Point Pollution Loads in Corn-Autumn Kimchi Cabbage Cultivation Areas by Fertilizer Application Levels Using the APEX Model (APEX 모델을 이용한 옥수수-가을배추 재배지의 시비 수준별 비점오염 부하량 평가)

  • Lee, Jong-Mun;Yeob, So-Jin;Jun, Sang-Min;Lee, Byungmo;Yang, Yerin;Choi, Soon-Kun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.5
    • /
    • pp.15-27
    • /
    • 2024
  • Agriculture is recognized as an important anthropogenic cause of non-point source loads. Improved understanding of non-point source loads according to fertilization practices can promote climate change and eutrophication mitigation. Thus, this study evaluated the impact of conventional and standard fertilization practices on non-point pollution (NPP) loads in a dual-cropping system, utilizing the Agricultural Policy/Environmental eXtender (APEX) model. Our research objectives were twofold: firstly, to calibrate and validate the APEX model with observed data through experiments from 2018 to 2023; and secondly, to compare the NPP loads under conventional and standard fertilization practices. The model calibration and validation showed satisfactory performance in simulating nitrogen (N) and phosphorus (P) loads, illustrating the model's applicability in a Korean agricultural setting. The simulation results under conventional fertilization practices revealed significantly higher NPP loads compared to the standard fertilization, with P loads under conventional practices being notably higher. Our findings emphasize the crucial role of recommended fertilization practices in reducing non-point source pollution. By providing a quantitative assessment of NPP loads under different fertilization practices, this study contributes valuable information to sustainable nutrient management in agricultural systems facing the dual challenges of climate change and environmental conservation.

The Impact Loads on the Hitch Point of the Tiller-Trailer System (동력경운기의 경사지 견인 및 주행 특성에 관한 연구(제일보)-동력경운기 -트레일계의 힛치점에 작용하는 충격력-)

  • 송현갑;장창주
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.33-48
    • /
    • 1977
  • Transporting agricultural products and the other material by the two-wheel-tractor (power-tiler)and trailer system may be one of its most widely used farming functions.The safety and hitching load for all the previaling performing conditions may be the general concern over the operation of the tiller-trailer system. In this study, a mathematical model to determine the static and dynamic forces excerting on the hitch point were developed . Based on the analysis of the model and the field measurements. the limiting hitching load and critical slope were analyzed. The results of the study are summarized as follows ; 1) The limit angle of slope land for the safety steering that two-wheel tractor-single axle trailer system was able to transport agricultural products was the direct angle (${\gamma}$) = 8 ; the cross angle$\beta$) 15 ; and it was decreased in accordance with the increase of carrying load ($W_4). 2) The critical velocity for safe operation in case of running on downward hill road was about 1.08m/sec. 3) The limiting carrying load for the safe steering was W$_4$=600kg. The degree of the safe steering for different braking methods was given in order as follows ; Simulataneous braking the tractor and trailer , braking the trailer only, and braking tractor only. 4) Among the three components of impact loads excerting on the hitch point, the component in the lateral direction ($P_{Vy}$) was near zero in spite of increase of hitching load ($W_4) , while the components in the other two mutually perpedicular directions ($P_{Vx}$ and ($P_{Vz}$) ) had larger values in horizontal plane than those in the slope lands. 5) Moment of forces on the lateral direction (M$y$) had the largest value among the three components of impact moment acting on the hitch point, however all the components were sharply increased in accordance with the increase of hitching loads ($W_4. Three components of the moment were the negative values.

  • PDF

LIDMOD Development for Evaluating Low Impact Development and Its Applicability to Total Maximum Daily Loads (지속가능한 도시개발을 위한 LID평가모델(LIDMOD)개발과 수질오염총량제에 대한 적용성 평가)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Low impact development (LID) technique is relatively new concept to reduce surface runoff and pollutant loading from land cover by attempting to match predevelopment condition with various integrated management practices (IMPs). In this study, computational model for designing and evaluating LID, named LIDMOD, was developed based on SCS-CN method and applied at Andong bus terminal to evaluate LID applicapability and design retention/detention area for volume or peak flow control. LIDMOD simulated with 21 years simulation period that yearly surface runoff by post-development without LID was significantly higher than that with LID showing about 2.8 times and LID could reduce efficiently yearly surface runoff with 75% reduction of increased runoff by conventional post development. LIDMOD designed detention area for volume/peak flow control with 20.2% of total area by hybrid design. LID can also efficiently reduce pollutant load from land cover. Pollutant loads from post-development without LID was much higher than those from pre-development with showing 37 times for BOD, 2 times for TN, and 9 times for TP. Pollutant loads from post-development with LID represented about 57% of those without LID. Increasing groundwater recharge reducing cooling and heating fee, creating green refuge at building area can be considered as additional benefits of LID. At the point of reducing runoff and pollutant load, LID might be important technique for Korean TMDL and LIDMOD can be useful tool to calculate unit load for the case of LID application.

LIDMOD3 Development for Design and Evaluation of Low Impact Development (저영향개발기법 설계 및 평가를 위한 LIDMOD3 개발)

  • Jeon, Ji-Hong;Seo, Seong-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.382-390
    • /
    • 2018
  • In this study, the LIDMOD3 was developed to design and evaluate low impact development (LIDMOD). In the same fashion, the LIDMOD3 employs a curve number (NRCS-CN) method to estimate the surface runoff, infiltration and event mean concentration as applicable to pollutant loads which are based on a daily time step. In these terms, the LIDMOD3 can consider a hydrologic soil group for each land use type LID-BMP, and the applied removal efficiency of the surface runoff and pollutant loads by virtue of the stored capacity, which was calculated by analyzing the recorded water balance. As a result of Model development, the LIDMOD3 is based on an Excel spread sheet and consists of 8 sheets of information data, including: General information, Annual precipitation, Land use, Drainage area, LID-BMPs, Cals-cap, Parameters, and the Results. In addition, the LIDMOD3 can estimate the annual hydrology and annual pollutant loads including surface runoff and infiltration, the LID efficiency of the estimated surface runoff for a design rainfall event, and an analysis of the peak flow and time to peak using a unit hydrolograph for pre-development, post-development without LID, and as calculated with LID. As a result of the model application as applied to an apartment, the LIDMOD3 can estimate LID-BMPs considering a well spatical distributed hydroloic soil group as realized on land use and with the LID-BMPs. Essentially, the LIDMOD3 is a screen level and simple model which is easy to use because it is an Excel based model, as are most parameters in the database. This system can be expected to be widely used at the LID site to collect data within various programmable model parameters for the processing of a detail LID model simulation.

Impact response analysis of delaminated composite laminates using analytical solution (이론 해를 이용한 층간 분리된 적층판의 충격거동 해석)

  • Kim, Sung-Joon;Shin, Jeong-Woo;Chae, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.315-320
    • /
    • 2007
  • An analytical solution has been developed for the impact response of delaminated composite plates. The analysis is based on an expansion of loads, displacements, and rotations in a Fourier series which satisfies the end boundary conditions of simply-supported. The analytical formulation adopts the Laplace transformation technique, requiring a linearization of contact deformation. In this paper, the nonlinear contact stiffness is replaced by a linearized stiffness, to provide an estimate of the additional compliance due to contact area deformation effects. It has been shown that defects such as delaminations may be modeled as spring stiffness. The change in the impact characteristics as this spring stiffness has been investigated theoretically. Predicted impact responses using analytical solution are compared with the numerical ones from the 3-D non-linear finite element model. From the results, it is shown that analytical solution was found to be reliable for predicting the impact response.

  • PDF

Free vibration and buckling analysis of the impacted hybrid composite beams

  • Ergun, Emin;Yilmaz, Yasin;Callioglu, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1055-1070
    • /
    • 2016
  • The aim of this experimental study is to investigate the free vibration and buckling behaviors of hybrid composite beams having different span lengths and orientation angles subjected to different impact energy levels. The impact energies are applied in range from 10 J to 30 J. Free vibration and buckling behaviors of intact and impacted hybrid composite beams are compared with each other for different span lengths, orientation angles and impact levels. In free vibration analysis, the first three modes of hybrid beams are considered and natural frequencies are normalized. It is seen that first and second modes are mostly affected with increasing impact energy level. Also, the fundamental natural frequency is mostly affected with the usage of mold that have 40 mm span length (SP40). Moreover, as the impact energy increases, the normalized critical buckling loads decrease gradually for $0^{\circ}$ and $30^{\circ}$ oriented hybrid beams but they fluctuate for the other beams.

Study on a reduction of railway vibration using impact dampers (충돌 댐퍼를 이용한 레일 진동 저감 연구)

  • Yang, Wonseok;Ahn, Sangkeun;Koh, Hyoin;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.119-120
    • /
    • 2014
  • This study presents an development of impact damper and its application to reduction of railway vibration from moving roads. The impact damper for reducing trnsverse vibration from moving loads were designed and verified using simple dynamic model. To verify the performance of the impact damper, the vibration of a simplified beam with the impact damper was measured. The performance on reducing vibration for different clearance and mass ratio of the damper was investigated. The numerical solutions were verified using the experimental results from a simplified beam. The result can be utilized to reduce the rolling noise from high-speed trains.

  • PDF

Axial Impact Collapse Analysis on Front-End Side Members of Vehicles by FEM (FEM에 의한 차량전면부 사이드부재의 축방향 충격압궤 해석)

  • Cha Cheon-Seok;Chung Jin-Oh;Yang In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • The front-end side members of vehicles(spot welded hat and double hat shaped section members) absorb most of the impact energy in a case of front-end collision. In this paper, specimens with various spot weld pitches have been tested with a high impact velocity of 7.19m/sec(impact energy of 1034J). The axial impact collapse simulation on the sections has been carried out to review the collapse characteristics of these sections, using an explicit finite element code, LS-DYNA3D. Comparing the results with experiments, the simulation has been verified; the energy absorbing capacity is analyzed and an analysis method is suggested to obtain exact collapse loads and deformation collapse modes.

Suggestion of a design load equation for ice-ship impacts

  • Choi, Yun-Hyuk;Choi, Hye-Yeon;Lee, Chi-Seung;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.386-402
    • /
    • 2012
  • In this paper, a method to estimate ice loads as a function of the buttock angle of an icebreaker is presented with respect to polycrystalline freshwater ice. Ice model tests for different buttock angles and impact velocities are carried out to investigate ice pressure loads and tendencies of ice pressure loads in terms of failure modes. Experimental devices were fabricated with an idealized icebreaker bow shape, and medium-scale ice specimens were used. A dry-drop machine with a freefall system was used, and four pressure sensors were installed at the bottom to estimate ice pressure loads. An estimation equation was suggested on the basis of the test results. We analyzed the estimation equation for design ice loads of the International Association of Classification Societies (IACS) classification rules. We suggest an estimation equation considering the relation between ice load, buttock angle, and velocity by modifying the equations given in the IACS classification rules.

Dynamic Response of Container Ship Subjected to Bow flare Slamming Loads

  • Choi, Tae-Soon;Islam, MD Shafiqul;Seo, Dae-Won;Kim, Joon-Gyu;Song, Kang-hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.195-203
    • /
    • 2018
  • The wave impact on ships could cause local damage to the ship's hull, which has been a concerning issue during the ship design process. In recent years, local structural damages of ships caused by slamming loads have been reported by accident; therefore, it is necessary to study the local slamming pressure loads and structural response assessment. In the present study, slamming loads around the ship's bow region in the presence of regular wave have been simulated by RANS equations discretized with a cell-centered finite volume method (FVM) in conjunction with the $k-{\Box}$ turbulence model. The dynamic structural response has been calculated using an explicit FE method. By adding the slamming pressure load of each time step to the finite element model, establishing the reasonable boundary conditions, and considering the material strain-rate effects, the dynamic response prediction of the bow flare structure has been achieved. The results and insights of this study will be helpful to design a container ship that is resistant enough to withstand bow flare slamming loads.