• Title/Summary/Keyword: impact forecast

Search Result 288, Processing Time 0.032 seconds

An Empirical Analysis of The Determinants and Long-term Projections for The Demand and Supply of Labor force (노동력수급의 요인분석과 전망)

  • 김중수
    • Korea journal of population studies
    • /
    • v.9 no.1
    • /
    • pp.41-53
    • /
    • 1986
  • The purpose of this paper is two-fold. One is to investigate the determinants of the demand supply of labor, and another is to project long-term demand and supply of labor. The paper consists of three parts. In the first part, theoretical models and important hypotheses are discussed: for the case of a labor supply model, issues regarding discouraged worker model, permanent wage hypothesis, and relative wage hypothesis are examined and for the case of a demand model, issues regarding estimating an employment demand equation within the framework of an inverted short-run produc- tion function are inspected. Particularly, a theoretical justification for introducing a demographic cohort variable in a labor supply equation is also investigated. In the second part, empirical results of the estimated supply and demand equations are analyzed. Supply equations are specified differently between primary and secondary labor force. That is, for the case of primary labor force groups including males aged 25 and over, attempts are made to explain the variations in participation behavior within the framework of a neo-classical economics oriented permanent wage hypothesis. On the other hand, for the case of females and young male labor force, variations in participation rates are explained in terms of a relative wage hypothesis. In other words, the participation behavior of primary labor force is related to short-rum business fluctuations, while that of secondary labor force is associated with intermediate swings of business cycles and demographic changes in the age structure of population. Some major findings arc summarized as follows. (1) For the case of males aged 14~19 and 2O~24 groups and females aged 14∼19, the effect of schhool enrollment rate is dominant and thus it plays a key role in explaining the recent declining trend of participation rates of these groups. (2) Except for females aged 20∼24, a demographic cohort variable, which captures the impact of changes in the age structure on participation behavior, turns out to show positive and significant coefficients for secondary labor force groups. (3) A cyclical variable produce significant coefficients for prime-age males and females reflecting that as compared to other groups the labor supply behavior of these groups is more closely related to short-run cyclical variations (4) The wage variable, which represents a labor-leisure trade-off turns out to yield significant coefficients only for older age groups (6O and over) for both males and females. This result reveals that unlike the experiences of other higer-income nations, the participation decision of the labor force of our nation is not highly sensitive with respect to wage changes. (5)The estimated result of the employment demand equation displays that given that the level of GNP remains constant the ability of the economy to absord labor force has been declining;that is, the elasticity of GNP with respect to labor absorption decreasre over time. In the third part, the results of long-term projections (for the period of 1986 and 1995) for age-sex specific participation rates are discussed. The participation rate of total males is anticipated to increase slightly, which is contrary to the recent trend of declining participation rates of this group. For the groups aged 25 and below, the participation rates are forecast to decline although the magnitude of decrease is likely to shrink. On the other hand, the participation rate of prime- age males (25 to 59 years old) is predicted to increase slightly during 1985 and 1990. For the case of females, except for 20∼24 and 25∼34 age groups, the participation rates are projected to decrease: the participation rates of 25∼34 age group is likely to remain at its current level, while the participation rate of 20∼24 age group is expected to increase considerably in the future (specifi- cally, from 55% in 1985 to 61% in 1990 and to 69% in 1995). In conclusion, while the number of an excess supply of labor will increase in absolute magnitude, its size as a ratio of total labor force is not likely to increase. However, the age composition of labor force is predicted to change; that is, the proportion of prime-age male and female labor force is projected to increase.

  • PDF

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

Assessing hydrologic impact of climate change in Jeju Island using multiple GCMs and watershed modeling (다중 GCM과 유역모델링을 이용한 기후변화에 따른 제주도의 수문학적 영향 평가)

  • Kim, Chul Gyum;Cho, Jaepil;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • The climate change impacts on hydrological components and water balance in Jeju Island were evaluated using multiple climate models and watershed model, SWAT-K. To take into account the uncertainty of the future forecast data according to climate models, climate data of 9 GCMs were utilized as weather data of SWAT-K for future period (2010-2099). Using the modeling results of the past (1992-2013) and the future period, the hydrological changes of each year were analyzed and the precipitation, runoff, evapotranspiration and recharge were increasing. Compared with the past, the change in the runoff was the largest (up to 50% increase) and the evapotranspiration was relatively small (up to 11% increase). Monthly results show that the amount of evapotranspiration and the amount of recharge are greatly increased as the amount of precipitation increases in August and September, while the amount of evapotranspiration decreases in the same period. January and December showed the opposite tendency. As a result of analyzing future water balance changes, the ratio of runoff, evapotranspiration, and recharge to rainfall did not change much, but compared to the past, the runoff rate increased up to 4.3% in the RCP 8.5 scenario, while the evapotranspiration rate decreased by up to 3.5%. Based on the results of other researchers and this study, it is expected that rainfall and runoff will increase gradually in the future under the assumption of present climate change scenarios. Especially summer precipitation and runoff are expected to increase. As a result, the amount of groundwater recharge in Jeju Island will increase.

Global Ocean Data Assimilation and Prediction System in KMA: Description and Assessment (기상청 전지구 해양자료동화시스템(GODAPS): 개요 및 검증)

  • Chang, Pil-Hun;Hwang, Seung-On;Choo, Sung-Ho;Lee, Johan;Lee, Sang-Min;Boo, Kyung-On
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.229-240
    • /
    • 2021
  • The Global Ocean Data Assimilation and Prediction System (GODAPS) in operation at the KMA (Korea Meteorological Administration) is introduced. GODAPS consists of ocean model, ice model, and 3-d variational ocean data assimilation system. GODAPS assimilates conventional and satellite observations for sea surface temperature and height, observations of sea-ice concentration, as well as temperature and salinity profiles for the ocean using a 24-hour data assimilation window. It finally produces ocean analysis fields with a resolution of 0.25 ORCA (tripolar) grid and 75-layer in depth. This analysis is used for providing a boundary condition for the atmospheric model of the KMA Global Seasonal Forecasting System version 5 (GloSea5) in addition to monitoring on the global ocean and ice. For the purpose of evaluating the quality of ocean analysis produced by GODAPS, a one-year data assimilation experiment was performed. Assimilation of global observing system in GODAPS results in producing improved analysis and forecast fields with reduced error in terms of RMSE of innovation and analysis increment. In addition, comparison with an unassimilated experiment shows a mostly positive impact, especially over the region with large oceanic variability.

Development of the forecasting model for import volume by item of major countries based on economic, industrial structural and cultural factors: Focusing on the cultural factors of Korea (경제적, 산업구조적, 문화적 요인을 기반으로 한 주요 국가의 한국 품목별 수입액 예측 모형 개발: 한국의, 한국에 대한 문화적 요인을 중심으로)

  • Jun, Seung-pyo;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.23-48
    • /
    • 2021
  • The Korean economy has achieved continuous economic growth for the past several decades thanks to the government's export strategy policy. This increase in exports is playing a leading role in driving Korea's economic growth by improving economic efficiency, creating jobs, and promoting technology development. Traditionally, the main factors affecting Korea's exports can be found from two perspectives: economic factors and industrial structural factors. First, economic factors are related to exchange rates and global economic fluctuations. The impact of the exchange rate on Korea's exports depends on the exchange rate level and exchange rate volatility. Global economic fluctuations affect global import demand, which is an absolute factor influencing Korea's exports. Second, industrial structural factors are unique characteristics that occur depending on industries or products, such as slow international division of labor, increased domestic substitution of certain imported goods by China, and changes in overseas production patterns of major export industries. Looking at the most recent studies related to global exchanges, several literatures show the importance of cultural aspects as well as economic and industrial structural factors. Therefore, this study attempted to develop a forecasting model by considering cultural factors along with economic and industrial structural factors in calculating the import volume of each country from Korea. In particular, this study approaches the influence of cultural factors on imports of Korean products from the perspective of PUSH-PULL framework. The PUSH dimension is a perspective that Korea develops and actively promotes its own brand and can be defined as the degree of interest in each country for Korean brands represented by K-POP, K-FOOD, and K-CULTURE. In addition, the PULL dimension is a perspective centered on the cultural and psychological characteristics of the people of each country. This can be defined as how much they are inclined to accept Korean Flow as each country's cultural code represented by the country's governance system, masculinity, risk avoidance, and short-term/long-term orientation. The unique feature of this study is that the proposed final prediction model can be selected based on Design Principles. The design principles we presented are as follows. 1) A model was developed to reflect interest in Korea and cultural characteristics through newly added data sources. 2) It was designed in a practical and convenient way so that the forecast value can be immediately recalled by inputting changes in economic factors, item code and country code. 3) In order to derive theoretically meaningful results, an algorithm was selected that can interpret the relationship between the input and the target variable. This study can suggest meaningful implications from the technical, economic and policy aspects, and is expected to make a meaningful contribution to the export support strategies of small and medium-sized enterprises by using the import forecasting model.

Study on Tourism Demand Forecast and Influencing Factors in Busan Metropolitan City (부산 연안도시 관광수요 예측과 영향요인에 관한 연구)

  • Kyu Won Hwang;Sung Mo Nam;Ah Reum Jang;Moon Suk Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.915-929
    • /
    • 2023
  • Improvements in people's quality of life, diversification of leisure activities, and changes in population structure have led to an increase in the demand for tourism and an expansion of the diversification of tourism activities. In particular, for coastal cities where land and marine tourism elements coexist, various factors influence their tourism demands. Tourism requires the construction of infrastructure and content development according to the demand at the tourist destination. This study aims to improve the prediction accuracy and explore influencing factors through time series analysis of tourism scale using agent-based data. Basic local governments in the Busan area were examined, and the data used were the number of tourists and the amount of tourism consumption on a monthly basis. The univariate time series analysis, which is a deterministic model, was used along with the SARIMAX analysis to identify the influencing factor. The tourism consumption propensity, focusing on the consumption amount according to business types and the amount of mentions on SNS, was set as the influencing factor. The difference in accuracy (RMSE standard) between the time series models that did and did not consider COVID-19 was found to be very wide, ranging from 1.8 times to 32.7 times by region. Additionally, considering the influencing factor, the tourism consumption business type and SNS trends were found to significantly impact the number of tourists and the amount of tourism consumption. Therefore, to predict future demand, external influences as well as the tourists' consumption tendencies and interests in terms of local tourism must be considered. This study aimed to predict future tourism demand in a coastal city such as Busan and identify factors affecting tourism scale, thereby contributing to policy decision-making to prepare tourism demand in consideration of government tourism policies and tourism trends.

A Study on Industries's Leading at the Stock Market in Korea - Gradual Diffusion of Information and Cross-Asset Return Predictability- (산업의 주식시장 선행성에 관한 실증분석 - 자산간 수익률 예측 가능성 -)

  • Kim Jong-Kwon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.355-380
    • /
    • 2004
  • I test the hypothesis that the gradual diffusion of information across asset markets leads to cross-asset return predictability in Korea. Using thirty-six industry portfolios and the broad market index as our test assets, I establish several key results. First, a number of industries such as semiconductor, electronics, metal, and petroleum lead the stock market by up to one month. In contrast, the market, which is widely followed, only leads a few industries. Importantly, an industry's ability to lead the market is correlated with its propensity to forecast various indicators of economic activity such as industrial production growth. Consistent with our hypothesis, these findings indicate that the market reacts with a delay to information in industry returns about its fundamentals because information diffuses only gradually across asset markets. Traditional theories of asset pricing assume that investors have unlimited information-processing capacity. However, this assumption does not hold for many traders, even the most sophisticated ones. Many economists recognize that investors are better characterized as being only boundedly rational(see Shiller(2000), Sims(2201)). Even from casual observation, few traders can pay attention to all sources of information much less understand their impact on the prices of assets that they trade. Indeed, a large literature in psychology documents the extent to which even attention is a precious cognitive resource(see, eg., Kahneman(1973), Nisbett and Ross(1980), Fiske and Taylor(1991)). A number of papers have explored the implications of limited information- processing capacity for asset prices. I will review this literature in Section II. For instance, Merton(1987) develops a static model of multiple stocks in which investors only have information about a limited number of stocks and only trade those that they have information about. Related models of limited market participation include brennan(1975) and Allen and Gale(1994). As a result, stocks that are less recognized by investors have a smaller investor base(neglected stocks) and trade at a greater discount because of limited risk sharing. More recently, Hong and Stein(1999) develop a dynamic model of a single asset in which information gradually diffuses across the investment public and investors are unable to perform the rational expectations trick of extracting information from prices. Hong and Stein(1999). My hypothesis is that the gradual diffusion of information across asset markets leads to cross-asset return predictability. This hypothesis relies on two key assumptions. The first is that valuable information that originates in one asset reaches investors in other markets only with a lag, i.e. news travels slowly across markets. The second assumption is that because of limited information-processing capacity, many (though not necessarily all) investors may not pay attention or be able to extract the information from the asset prices of markets that they do not participate in. These two assumptions taken together leads to cross-asset return predictability. My hypothesis would appear to be a very plausible one for a few reasons. To begin with, as pointed out by Merton(1987) and the subsequent literature on segmented markets and limited market participation, few investors trade all assets. Put another way, limited participation is a pervasive feature of financial markets. Indeed, even among equity money managers, there is specialization along industries such as sector or market timing funds. Some reasons for this limited market participation include tax, regulatory or liquidity constraints. More plausibly, investors have to specialize because they have their hands full trying to understand the markets that they do participate in

  • PDF

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.