• Title/Summary/Keyword: impact force history

Search Result 54, Processing Time 0.022 seconds

Impact identification and localization using a sample-force-dictionary - General Theory and its applications to beam structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.195-214
    • /
    • 2016
  • Monitoring of impact loads is a very important technique in the field of structural health monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response function are usually known. Generally this leads to a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop more suitable reconstruction strategies and to increase accuracy. An impact event is characterized by a short time duration and a spatial concentration. Moreover the force time history of an impact has a specific shape, which also can be taken into account. In this contribution these properties of the external force are employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility of reconstructing the impact based on a noisy output signal is first demonstrated with simulated measurements of a simple beam structure. Then an experimental investigation of a real beam is performed.

Analysis on the Dynamic Respone of the Hull Structure due to Slamming Impact - By Finite Element Method - (슬래밍 충격을 받는 선체의 동적 응답해석 -유한요소법으로-)

  • Hong, Bong-Ki;Moon, Duk-Hong;Bae, Dong-Myung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 1983
  • In rough seas, actual behaviours of a ship may not be estimated by the linear strip theory, because of Nonlinearities due to the hull shape, bottom slamming and bottom and/or bow-flare slamming. In case of slamming, impulsive hydrodynamic pressure occurs on the fore body surface of the ship, resulting hull vibration called whipping, by which the ship may suffer from serious structural damages and the impact pressure, depends critically on the relative velocity at re-entry. In this paper, the Time history of impact froce at each station, the longitudinal distribution of impact force at critical time, the Time history of acceleration at F.P. and the Time history of Bending moment at midship are illustrated. That is, authors analyzed Dynamic response of container ship to be subjected slamming impact force.

  • PDF

A Study on the Determination of Reference Parameter for Aircraft Impact Induced Risk Assessment of Nuclear Power Plant (원전의 항공기 충돌 리스크 평가를 위한 대표매개변수 선정 연구)

  • Shin, Sang Shup;Hahm, Daegi;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.437-450
    • /
    • 2014
  • In this study, we developed a methodology to determine the reference parameter for an aircraft impact induced risk assessment of nuclear power plant (NPP) using finite element impact analysis of containment building. The target structure used to develop the method of reference parameter selection is one of the typical Korean PWR type containment buildings. We composed a three-dimensional finite element model of the containment building. The concrete damaged plasticity model was used for the concrete material model. The steels in the tendon, rebar, and liner were modeled using the piecewise-linear stress-strain curves. To evaluate the correlations between structural response and each candidate parameter, we developed Riera's aircraft impact force-time history function with respect to the variation of the loading parameters, i.e., impact velocity and mass of the remaining fuel. For each force-time history, the type of aircraft is assumed to be a Boeing 767 model. The variation ranges of the impact velocity and remaining fuel percentage are 50 to 200m/s, and 30 to 90%, respectively. Four parameters, i.e., kinetic energy, total impulse, maximum impulse, and maximum force are proposed for candidates of the reference parameter. The wellness of the correlation between the reference parameter and structural responses was formulated using the coefficient of determination ($R^2$). From the results, we found that the maximum force showed the highest $R^2$ value in most responses in the materials. The simplicity and intuitiveness of the maximum force parameter are also remarkable compared to the other candidate parameters. Therefore, it can be concluded that the maximum force is the most proper candidate for the reference parameter to assess the aircraft impact induced risk of NPPs.

lp-norm regularization for impact force identification from highly incomplete measurements

  • Yanan Wang;Baijie Qiao;Jinxin Liu;Junjiang Liu;Xuefeng Chen
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.97-116
    • /
    • 2024
  • The standard l1-norm regularization is recently introduced for impact force identification, but generally underestimates the peak force. Compared to l1-norm regularization, lp-norm (0 ≤ p < 1) regularization, with a nonconvex penalty function, has some promising properties such as enforcing sparsity. In the framework of sparse regularization, if the desired solution is sparse in the time domain or other domains, the under-determined problem with fewer measurements than candidate excitations may obtain the unique solution, i.e., the sparsest solution. Considering the joint sparse structure of impact force in temporal and spatial domains, we propose a general lp-norm (0 ≤ p < 1) regularization methodology for simultaneous identification of the impact location and force time-history from highly incomplete measurements. Firstly, a nonconvex optimization model based on lp-norm penalty is developed for regularizing the highly under-determined problem of impact force identification. Secondly, an iteratively reweighed l1-norm algorithm is introduced to solve such an under-determined and unconditioned regularization model through transforming it into a series of l1-norm regularization problems. Finally, numerical simulation and experimental validation including single-source and two-source cases of impact force identification are conducted on plate structures to evaluate the performance of lp-norm (0 ≤ p < 1) regularization. Both numerical and experimental results demonstrate that the proposed lp-norm regularization method, merely using a single accelerometer, can locate the actual impacts from nine fixed candidate sources and simultaneously reconstruct the impact force time-history; compared to the state-of-the-art l1-norm regularization, lp-norm (0 ≤ p < 1) regularization procures sufficiently sparse and more accurate estimates; although the peak relative error of the identified impact force using lp-norm regularization has a decreasing tendency as p is approaching 0, the results of lp-norm regularization with 0 ≤ p ≤ 1/2 have no significant differences.

Analysis of a force reconstruction problem

  • Jacquelin, E.;Bennani, A.;Massenzio, M.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.237-254
    • /
    • 2005
  • This article deals with the reconstruction of an impact force. This requires to take measurements from the impacted structures and then to deconvolve those signals from the impulse response function. More precisely, the purpose of the work described here is to analyse the method of deconvolution and the problems that it implies. Thus, it is highlighted that the associated deconvolution problem depends on the location of the measurement points: it is possible or not to reconstruct the force of impact in function of the location of this point. Then, the role of the antiresonances is linked up with this problem. The singular value decomposition is used to understand these difficulties. Numerical predictions are compared and validated with experiments.

Low-velocity impact response of laminated composite plates using a higher order shear deformation theory (고차 전단 변형이론에 의한 복합재료 적층판의 저속 충격응답)

  • Lee, Young-Shin;Park, Oung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1365-1381
    • /
    • 1990
  • A $C^{0}$ continuous displacement finite element method based on a higher-order shear deformation theory is employed in the prediction of the transient response of laminated composite plates subjected to low-velocity impact. A modified contact law was applied to calculate the contact force during impact. The discrete element chosen is a nine-noded quadrilateral with 5 degree-of-freedom per node. The Wilson-.theta. time integration algorithm is used for solving the time dependent equations of the impactor and the central difference method was adopted to perform time integration of the plate. Numerical results, including the contact force history, deflection, and velocity history, are presented. Comparisons of numerical results using a higher order theory and a first-order theory show that using a higher order theory provides more accurate results. Effects of boundary condition, impact velocity, and mass of the impactors are also discussed.d.

Dvnarnic Reswnse of Laminated Com~osite Shell under Low-Velocity Impact (복합적층쉘의 저속충격에 대한 동적 거동 해석)

  • 조종두;조영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.969-974
    • /
    • 1994
  • The dynamic behavior of graphite/epoxy laminated composite shell structure due to low-velocity impact is investigated using the finite element method. In this analysis, the Newmark's constant-acceleration time integration algorithm is used. The impact response such as contact force, central deflection and dynamic strain history form shell structure analysis are compared with those form the plate non-linear analysis. The effects of curvature, impact velocity and mass of impactor on the composite shell are discussed.

  • PDF

Test study on the impact resistance of steel fiber reinforced full light-weight concrete beams

  • Yang, Yanmin;Wang, Yunke;Chen, Yu;Zhang, Binlin
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.567-575
    • /
    • 2019
  • In order to investigate the dynamic impact resistance of steel fiber reinforced full light-weight concretes, we implemented drop weight impact test on a total of 6 reinforced beams with 0, 1 and 2%, steel fiber volume fraction. The purpose of this test was to determine the failure modes of beams under different impact energies. Then, we compared and analyzed the time-history curves of impact force, midspan displacement and reinforcement strain. The obtained results indicated that the deformations of samples and their steel fibers were proportional to impact energy, impact force, and impact time. Within reasonable ranges of parameter values, the effects of impact size and impact time were similar for all volumetric contents of steel fibers, but they significantly affected the crack propagation mechanism and damage characteristics of samples. Increase of the volumetric contents of steel fibers not only effectively reduced the midspan displacement and reinforcement strain of concrete samples, but also inhibited crack initiation and propagation such that cracks were concentrated in the midspan areas of beams and the frequency of cracks at supports was reduced. As a result, the tensile strength and impact resistance of full light-weight concrete beams were significantly improved.

A Study on Human Body Impact Characteristics of the Human-rifle System on Shooting (인체-화기시스템의 인체충격특성에 관한 연구)

  • Lee Young-Shin;Lee Jang-Won;Choi Young-Jin;Chae Je-Wook;Choi Eui-Jung;Kim In-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.159-167
    • /
    • 2006
  • The impact time history of human body with K2 rifle on stand shooting posture is analyzed and compared with experimental results. Analysis model is Korean 50% tile of twenties and height, weight is 174 cm, 62 kgf respectively. The muscle and bone human model of Korean man's twenties 50% tile is applied. ADAMS program is used for kinematic analysis and human model is developed by Life Mod program. The effect of the ground support condition, grip position and human weight factor are studied. Maximum impact force of shoulder is 784 N. The horizontal displacement of K2 rifle muzzle is 2.9 cm.

Damage Detection in Composite Laminates using Tapping Sound (태핑음을 이용한 복합적층판의 손상검출)

  • Kim, Sung-Joon;Hong, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1089-1095
    • /
    • 2009
  • The radiated sound pressure induced by tapping test is obtained by solving the Rayleigh integral equation. For structurally radiated sound, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. In this paper, the delamination model is used to analyze the impact response of delaminated composite laminates. And efficient spring-mass model has been proposed to model hammer shaped impactor. Predicted sound pressure histories are compared with test data. The influence of damage on the sound pressure and impacted force history of laminates were investigated. The results show that both radiated sound pressure and impact force history are strongly influenced by delamination on laminates. As a result, it is shown that the presented sound based tapping method was found to be reliable for detecting the damage in composite laminate.