• Title/Summary/Keyword: impact failure

Search Result 936, Processing Time 0.025 seconds

Implications of Managing Chronic Obstructive Pulmonary Disease in Cardiovascular Diseases

  • Deshmukh, Kartik;Khanna, Arjun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.1
    • /
    • pp.35-45
    • /
    • 2021
  • Globally, cardiovascular diseases and chronic obstructive pulmonary disease (COPD) are the leading causes of the non-communicable disease burden. Overlapping symptoms such as breathing difficulty and fatigue, with a lack of awareness about COPD among physicians, are key reasons for under-diagnosis and resulting sub-optimal care relative to COPD. Much has been published in the past on the pathogenesis and implications of cardiovascular comorbidities in COPD. However, a comprehensive review of the prevalence and impact of COPD management in commonly encountered cardiac diseases is lacking. The purpose of this study was to summarize the current knowledge regarding the prevalence of COPD in heart failure, ischemic heart disease, and atrial fibrillation. We also discuss the real-life clinical presentation and practical implications of managing COPD in cardiac diseases. We searched PubMed, Scopus, EMBASE, and Google Scholar for studies published 1981-May 2020 reporting the prevalence of COPD in the three specified cardiac diseases. COPD has high prevalence in heart failure, atrial fibrillation, and ischemic heart disease. Despite this, COPD remains under-diagnosed and under-managed in the majority of patients with cardiac diseases. The clinical implications of the diagnosis of COPD in cardiac disease includes the recognition of hyperinflation (a treatable trait), implementation of acute exacerbations of COPD (AECOPD) prevention strategies, and reducing the risk of overuse of diuretics. The pharmacological agents for the management of COPD have shown a beneficial effect on cardiac functions and mortality. The appropriate management of COPD improves the cardiovascular outcomes by reducing hyperinflation and preventing AECOPD, thus reducing the risk of mortality, improving exercise tolerance, and quality of life.

An Exploratory Study on Policy Decision Making with Artificial Intelligence: Applying Problem Structuring Typology on Success and Failure Cases (인공지능을 활용한 정책의사결정에 관한 탐색적 연구: 문제구조화 유형으로 살펴 본 성공과 실패 사례 분석)

  • Eun, Jong-Hwan;Hwang, Sung-Soo
    • Informatization Policy
    • /
    • v.27 no.4
    • /
    • pp.47-66
    • /
    • 2020
  • The rapid development of artificial intelligence technologies such as machine learning and deep learning is expanding its impact in the public administrative and public policy sphere. This paper is an exploratory study on policy decision-making in the age of artificial intelligence to design automated configuration and operation through data analysis and algorithm development. The theoretical framework was composed of the types of policy problems according to the degree of problem structuring, and the success and failure cases were classified and analyzed to derive implications. In other words, when the problem structuring is more difficult than others, the greater the possibility of failure or side effects of decision-making using artificial intelligence. Also, concerns about the neutrality of the algorithm were presented. As a policy suggestion, a subcommittee was proposed in which experts in technical and social aspects play a professional role in establishing the AI promotion system in Korea. Although the subcommittee works independently, it suggests that it is necessary to establish governance in which the results of activities can be synthesized and integrated.

Hydro-mechanical coupling behaviors in the failure process of pre-cracked sandstone

  • Li, Tingchun;Du, Yiteng;Zhu, Qingwen;Ren, Yande;Zhang, Hao;Ran, Jinlin
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.573-588
    • /
    • 2021
  • The interaction of cracks and water significantly affects the fracture mechanism of rocks. In this study, laboratory tests were conducted using sandstone samples containing a single fissure to explore the hydro-mechanical behaviors in the failure process of pre-cracked rocks. The internal crack characteristics were also analyzed using X-ray CT scanning. The results show that the confining pressure has the greatest effect on the mechanical properties (e.g., strengths, elastic modulus, and Poisson's ratio), followed by the fissure inclination and water pressure. At a lower fissure inclination, the confining pressure may control the type main cracks that form, and an increase in the water pressure increases the number of anti-wing cracks and the length of wing cracks and branch cracks. However, the fracture behaviors of samples with a higher fissure inclination are only slightly affected by the confining pressures and water pressures. The effect of fissure inclination on the internal crack area is reduced with the propagation from the fissure tips to the sample ends. The fissure inclination mainly affects the value of permeability but not affect the trend. The impact of pre-existing fissure on permeability is smaller than that of confining pressure and water pressure.

Study on Mode I Fracture Toughness and FEM analysis of Carbon/Epoxy Laminates Using Acoustic Emission Signal (음향 방출 신호를 이용한 탄소/에폭시 적층판의 Mode I 파괴 인성 및 유한요소해석에 관한 연구)

  • Cho, Hyun-jun;Jeon, Min-Hyeok;No, Hae-Ri;Kim, In-Gul
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • Composite materials have been used in aerospace industry and many applications because of many advantages such as specific strength and stiffness and corrosion resistance etc. However, it is vulnerable to impacts, these impact lead to formation of cracks in composite laminate and failure of structures. In this paper, we analyzed Mode I fracture toughness of Carbon/Epoxy laminates using acoustic emission signal. DCB test was carried out to analyze Mode I failure characterization of Carbon/Epoxy laminates, and AE sensor was attached to measure AE signal induced by failure of specimen. Fracture toughness was calculated using cumulative AE energy and measured crack length using camera. The calculated fracture toughness was applied in FE model and the result of FE analysis compared with DCB test results. The results show good agreement with between FEM and DCB test results.

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

Effect of ages and season temperatures on bi-surface shear behavior of HESUHPC-NSC composite

  • Yang Zhang;Yanping Zhu;Pengfei Ma;Shuilong He;Xudong Shao
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.359-376
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) has become an attractive cast-in-place repairing material for existing engineering structures. The present study aims to investigate age-dependent high-early-strength UHPC (HESUHPC) material properties (i.e., compressive strength, elastic modulus, flexural strength, and tensile strength) as well as interfacial shear properties of HESUHPC-normal strength concrete (NSC) composites cured at different season temperatures (i.e., summer, autumn, and winter). The typical temperatures were kept for at least seven days in different seasons from weather forecasting to guarantee an approximately consistent curing and testing condition (i.e., temperature and relative humidity) for specimens at different ages. The HESUHPC material properties are tested through standardized testing methods, and the interfacial bond performance is tested through a bi-surface shear testing method. The test results quantify the positive development of HESUHPC material properties at the early age, and the increasing amplitude decreases from summer to winter. Three-day mechanical properties in winter (with the lowest curing temperature) still gain more than 60% of the 28-day mechanical properties, and the impact of season temperatures becomes small at the later age. The HESUHPC shrinkage mainly occurs at the early age, and the final shrinkage value is not significant. The HESUHPC-NSC interface exhibits sound shear performance, the interface in most specimens does not fail, and most interfacial shear strengths are higher than the NSC-NSC composite. The HESUHPC-NSC composites at the shear failure do not exhibit a large relative slip and present a significant brittleness at the failure. The typical failures are characterized by thin-layer NSC debonding near the interface, and NSC pure shear failure. Two load-slip development patterns, and two types of main crack location are identified for the HESUHPC-NSC composites tested in different ages and seasons. In addition, shear capacity of the HESUHPC-NSC composite develops rapidly at the early age, and the increasing amplitude decreases as the season temperature decreases. This study will promote the HESUHPC application in practical engineering as a cast-in-place repairing material subjected to different natural environments.

Gastrointestinal Bleeding in Extracorporeal Membrane Oxygenation Patients: A Comprehensive Analysis of Risk Factors and Clinical Outcomes

  • Sahri Kim;Jung Hyun Lim;Ho Hyun Ko;Lyo Min Kwon;Hong Kyu Lee;Yong Joon Ra;Kunil Kim;Hyoung Soo Kim
    • Journal of Chest Surgery
    • /
    • v.57 no.2
    • /
    • pp.195-204
    • /
    • 2024
  • Background: Extracorporeal membrane oxygenation (ECMO) is an intervention for severe heart and lung failure; however, it poses the risk of complications, including gastrointestinal bleeding (GIB). Comprehensive analyses of GIB in patients undergoing ECMO are limited, and its impact on clinical outcomes remains unclear. Methods: This retrospective study included 484 patients who received venovenous and venoarterial ECMO between January 2015 and December 2022. Data collected included patient characteristics, laboratory results, GIB details, and interventions. Statistical analyses were performed to identify risk factors and assess the outcomes. Results: GIB occurred in 44 of 484 patients (9.1%) who received ECMO. Multivariable analysis revealed that older age (odds ratio [OR], 1.04; 95% confidence interval [CI], 1.01-1.06; p=0.0130) and need to change the ECMO mode (OR, 3.74; 95% CI, 1.75-7.96; p=0.0006) were significant risk factors for GIB, whereas no association was found with antiplatelet or systemic anticoagulation therapies during ECMO management. Half of the patients with GIB (22/44, 50%) underwent intervention, with endoscopy as the primary modality (19/22, 86.4%). Patients who underwent ECMO and developed GIB had higher rates of mortality (40/44 [90.9%] vs. 262/440 [59.5%]) and ECMO weaning failure (38/44 [86.4%] vs. 208/440 [47.3%]). Conclusion: GIB in patients undergoing ECMO is associated with adverse outcomes, including increased risks of mortality and weaning failure. Even in seemingly uncomplicated cases, it is crucial to avoid underestimating the significance of GIB.

Structural response of a three-story precast concrete structure subjected to local diaphragm failures in a shake table test

  • Ilyas Aidyngaliyev;Dichuan Zhang;Robert Fleischman;Chang-Seon Shon;Jong Kim
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.195-204
    • /
    • 2024
  • Floor inertial forces are transferred to lateral force resisting systems through a diaphragm action during earthquakes. The diaphragm action requires floor slabs to carry in-plane forces. In precast concrete diaphragms, these forces must be carried across the joints between precast floor units as they represent planes of weakness. Therefore, diaphragm reinforcement with sufficient strength and deformability is necessary to ensure the diaphragm action for the floor inertial force transfer. In a shake table test for a three-story precast concrete structure, an unexpected local failure in the diaphragm flexural reinforcement occurred. This failure caused loss of the diaphragm action but did not trigger collapse of the structure due to a possible alternative path for the floor inertial force transfer. This paper investigates this failure event and its impact on structural seismic responses based on the shake table test and simulation results. The simulations were conducted on a structural model with discrete diaphragm elements. The structural model was also validated from the test results. The investigation indicates that additional floor inertial force will be transferred into the gravity columns after loss of the diaphragm action which can further result in the increase of seismic demands in the gravity column and diaphragms in adjacent floors.

A Study of Analysis for Impact Assessment of the Cost Risk-Factor on the Design-Build Projects based on Business Process (설계시공일괄방식 사업의 업무단계별 사업비용 리스크요인에 대한 영향도 평가 및 분석)

  • Seo, Jae-Pil;Lee, Sang-Hyun;Song, Young-Woong;Choi, Yoon-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.3
    • /
    • pp.14-24
    • /
    • 2012
  • Recently, a delivery system has been rapidly changed in the global construction market. Also, construction projects are becoming bigger and more technology-intensive. A lot of projects have been delivered by Design-Build(DB) System; from the standpoint of cost, approximately 40% of delivered constructions by a Public Procurement Service were DB in 2009. Nevertheless, the achievement has not surpassed our expectations on management of the project cost. On the characteristic of DB, the reasons why that happens are that projects contract have been signed after the Design Development Stage; the insufficient review about new technology and up-to-date construction methods; a lack of discussion in process of design. Those reasons cause a risk of increasing Cost of the projects. In order to solve these problems, it is desirable to find Cost-increasing factors in promoting the projects and select on the order of priority for Risk-Factor with careful management. Therefore, this study analyzed the weight of each phase of the project on the authority of properties of DB project, and identified Risk-factors which is increasing the cost on the aspect of project management. Based on this analysis, the impact assessment of Risk-factor is evaluated through the Failure Mode and Effect Analysis(FMEA).

Case study on stability performance of asymmetric steel arch bridge with inclined arch ribs

  • Hu, Xinke;Xie, Xu;Tang, Zhanzhan;Shen, Yonggang;Wu, Pu;Song, Lianfeng
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.273-288
    • /
    • 2015
  • As one of the most common failure types of arch bridges, stability is one of the critical aspects for the design of arch bridges. Using 3D finite element model in ABAQUS, this paper has studied the stability performance of an arch bridge with inclined arch ribs and hangers, and the analysis also took the effects of geometrical and material nonlinearity into account. The impact of local buckling and residual stress of steel plates on global stability and the applicability of fiber model in stability analysis for steel arch bridges were also investigated. The results demonstrate an excellent stability of the arch bridge because of the transverse constraint provided by transversely-inclined hangers. The distortion of cross section, local buckling and residual stress of ribs has an insignificant effect on the stability of the structure, and the accurate ultimate strength may be obtained from a fiber model analysis. This study also shows that the yielding of the arch ribs has a significant impact on the ultimate capacity of the structure, and the bearing capacity may also be approximately estimated by the initial yield strength of the arch rib.