• Title/Summary/Keyword: impact energy speed

Search Result 204, Processing Time 0.036 seconds

Impact Damage of CFRP Laminated Shells with the Curvature (곡률반경을 갖는 CFRP 적층쉘의 충격손상)

  • 황재중;이길성;김영남;나승우;심재기;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1341-1344
    • /
    • 2003
  • Studies on impact damage of composite laminate shells were fewer compared with those on impact behaviors to analyze time-load, displacement-load and impact energy - energy absorption. Up to date the studies were not enough to demonstrate suitability of their results because they were dependent on theories and numerical analyses. In particular, it is a well-known fact that there was a correlation between initial peak load and damage resistance of composite material flat plates imposed with low-speed impact, but studies on composite material shells with curvature were also very few. Actually structures such as wings or moving bodies of airplanes, motor cases and pressure containers of rockets are circular. And as low-speed impact load is imposed for optimal design of take-off and landing, and containers of airplanes, it is very important to analyze evaluation of behaviors and damaged areas. Therefore, in this paper to evaluate the impact characteristics of the CFRP laminate shell according to size of curvature quantitatively, it was to identify energy absorption and impact damage instruments according to change of impact speed.

  • PDF

Changes of the Kinetic Energy of Putter Head and Ball Movements during the Process of Impact (퍼팅 스트로크의 충돌과정에서 나타난 퍼터헤드와 볼의 운동에너지 변화 분석)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • The purpose of this study was to analyze the kinetic energy of putter head and ball movements during the process of impact. Highly skilled 5 golfers(less than 1 handicap) participated in this study and the target distance was 3 m. Movements of ball and putter head were recorded with 2 VHS video cameras(60 Hz, 1/500 s shutter speed). Small control object($18.5{\times}18.5{\times}78.5\;cm$) was used in this sdtuldy. Analyzing the process of impact, putter was digitized before 0.0835 s and after 0.0835 s of impact. Ball was digitized 0.1336 s after impact. The results showed that the maximum speed was appeared at Impact and prolonged for a while. Contact point of the club head was within 0.7 cm to the z axis. After contacting the club head, the ball was moved above the ground level(slide) and returned to the ground with sliding and rolling. After contacting the ground, the speed of ball was relied on the surface of the ground. During impact, 70% of kinetic energy of club head has been transferred to the ball.

Probabilistic Reliability Evaluation of Power Systems Including Wind Turbine Generators Considering Wind Speed Correlation

  • Wu, Liang;Park, Jeong-Je;Choi, Jae-Seok;Ei-Keib, A.A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.485-491
    • /
    • 2009
  • The importance of renewable energy sources has been growing at a high rate as a result of being environment friendly. In particular, wind power is one of the most successfully utilized of such sources to produce electrical energy. Because of the randomness of wind speed, the reliability impact on this highly variable energy power is important aspect that needs to be assessed. In this paper, the impact on the reliability indices of wind speed correlation between two farms is considered.

Numerical study on tensioned membrane structures under impact load

  • Zhang, Yingying;Zhao, Yushuai;Zhang, Mingyue;Zhou, Yi;Zhang, Qilin
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.109-118
    • /
    • 2019
  • This paper presents the numerical simulation of membrane structure under impact load. Firstly, the numerical simulation model is validated by comparing with the test in Hao's research. Then, the effects of the shape of the projectile, the membrane prestress and the initial impact speed, are investigated for studying the dynamic response and failure mechanism, based on the membrane displacement, projectile acceleration and kinetic energy. Finally, the results show that the initial speed and the punch shape are related with the loss of kinetic energy of projectiles. Meanwhile, the membrane prestress is an important factor that affects the energy dissipation capacity and the impact resistance of membrane structures.

Concrete compressive strength identification by impact-echo method

  • Hung, Chi-Che;Lin, Wei-Ting;Cheng, An;Pai, Kuang-Chih
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • A clear correlation exists between the compressive strength and elastic modulus of concrete. Unfortunately, determining the static elastic modulus requires destructive methods and determining the dynamic elastic modulus is greatly complicated by the shape and size of the specimens. This paper reports on a novel approach to the prediction of compressive strength in concrete cylinders using numerical calculations in conjunction with the impact-echo method. This non-destructive technique involves obtaining the speeds of P-waves and S-waves using correction factors through numerical calculation based on frequencies measured using the impact-echo method. This approach makes it possible to calculate the dynamic elastic modulus with relative ease, thereby enabling the prediction of compressive strength. Experiment results demonstrate the speed, convenience, and efficacy of the proposed method.

Development of a Miniature Pendular Type Impact Testing Machine Using a Magnetic Powder Brake (마그네틱 파우더 브레이크를 이용한 소형 진자형 충격시험기 개발)

  • You, In-Dong;Lee, Man-Suk;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.140-146
    • /
    • 2011
  • A miniature pendular type impact testing machine was designed and developed, adopting a magnetic powder brake in order to investigate tensile and shear behavior of a small solder ball at high speed. In this testing system, the potential energy of the pendulum is transferred into the impact energy during its drop. Then, the impact energy is transmitted through the striker which is connected to the push rods to push the specimen for tensile loading. The tensile behavior of lead-free solder ball in diameter of 760 ${\mu}m$ was successfully investigated in a speed range of 0.15 m/s~1.25 m/s using this designed device. The maximum tensile strength of the solder joint decreases with the loading speed in the testing condition. The maximum tensile strength of the joint was 56 MPa in the low speed region.

Static and Dynamic Characteristics of AC4C Aluminum Alloy (AC4C 알루미늄 합금의 정적 및 동적 특성)

  • Kwon, Y.G.;Ju, W.K.;Song, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.220-225
    • /
    • 2007
  • The mechanical characteristics of AC4C Aluminum Casting Alloy were investigated by tensile test and impact test. Based on the tensile test' s result, we found that the yield strength of a high speed was about 10% higher than that of a low speed test and the maximum rupture strain mostly occurred in low speed tensile test. The impact energy of curved surface specimen was higher than that of plane surface specimen that can be measured in impact test.

  • PDF

A Study on Characteristics of Impact Fracture in CFRP Laminate Plates (탄소섬유강화 복합재 적층판의 충격파괴 특성에 관한 연구)

  • Yang, I.Y.;Jung, J.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.38-46
    • /
    • 1995
  • In this paper, an experimental study on the effects of the impact damage and the perforation characteristic of CFRP laminates with different fiber stacking orientation and ply number was done through an observation of interrelations between the impact energy vs. transmitted energy and the impact energy vs. absorbed energy per unit volume. The velocities of the ball before or after impact are measured by the high-speed camera. And when CFRP laminates are subjected to tranverse impact by a steel ball(${\phi}10$), the delamination shapes generated by impact damage are observed by using SAM (Scanning acoustic Microscope).

  • PDF

Calculation Method and Influence Factor for Speed Change of a Vehicle Impacting Small Sign Post (소형지주에 충돌하는 차량의 속도변화 산정방법과 영향인자)

  • Ko, Man-Gi;Kim, Kee-Dong;Jun, Sung-Min;Sung, Jung-Gon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • Important factor in designing a breakaway sign support is the velocity change of the impact vehicle. It is measured from the crash test or can be calculated by 3-D Finite Element Analysis. It can also be calculated with relative ease utilizing energy and momentum conservation. In this paper a formula to calculate the velocity change of a car during the time of impact against a small sign is derived utilizing the energy and momentum balance. Using the formula, parametric studies were conducted to find that impact speed, separation force and Breakaway Fracture Energy(BFE) of the posts which represent the degree of fixedness to the foundation are the important factor to vehicle's speed change. It is shown that speed change is larger in the lower speed impact and to the posts with large separation force and BFE.

Study on the Crashworthiness Analysis and Evaluation of the High-Speed EMU (동력분산형 고속전철의 충돌안전도 해석 및 평가기술 연구)

  • Koo, Jeong-Seo;Kim, Geo-Young;Cho, Hyun-Jik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1213-1220
    • /
    • 2008
  • In this study, the crashworthy design guidelines for the high speed EMU were derived and numerically evaluated. As for this high speed train, there are several different features from the KTX in that the conventional type bogies are adopted and the front end car (TC car) accommodates passengers. It is natural that the impact acceleration of the front end car should be controlled under the appropriate level stipulated at safety regulations for collision accidents. Also, car-to-car interfacing structures and devices should be deliberately designed to prevent overriding and telescoping mechanisms. As the first step for these design countermeasures, it was studied that how much impact energy should be absorbed at the energy absorbing zones and devices of each carbody to satisfy the impact acceleration regulations of the safety regulations. These results will be used as the crashworthy design guidelines for the high speed train in the next year research.

  • PDF