• Title/Summary/Keyword: impact design

Search Result 5,183, Processing Time 0.028 seconds

A Study on Impact Collapse Modes of Composite Structural Members using Carbon Fiber Reinforced Plastics for Car Body Lightweight (차체 경량화를 위한 CFRP 복합구조부재의 충격압궤모드에 관한 연구)

  • Hwang, W.C.;Choi, Y.M.;Im, K.H.;Cha, C.S.;Yang, Y.J.;Yang, I.Y.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.7-14
    • /
    • 2014
  • This study aimed to develop members with the optimum impact characteristics to ensure a protected space for passengers in the case of automobile collisions. Accordingly, these members were fabricated to provide sufficient rigidity and safety to the passenger room structure and to absorb large amounts of energy during collision. In particular, CFRP members were fabricated with different section shapes such as square and single- and double-hat shapes. Next, their impact collapse characteristics and collapse modes were quantitatively analyzed according to the changes in section shapes and stacking angles. This analysis was performed to obtain design data that can be applied in the development of optimum lightweight members for automobiles.

The Impact of Technology Adoption on Organizational Productivity

  • LAKHWANI, Monika;DASTANE, Omkar;SATAR, Nurhizam Safie Mohd;JOHARI, Zainudin
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.4
    • /
    • pp.7-18
    • /
    • 2020
  • Purpose: This research investigates the impact of technology adoption on organisation productivity. The framework has three independent variables viz. technological change, information technology (IT) infrastructure, and IT knowledge management and one dependent variable as organisational productivity. Research design, data and methodology: An explanatory research design with a quantitative research method was employed, and data was collected using a self-administered questionnaire using online as well as an offline survey. The sample consisted of 300 IT managers and senior-level executives (production as well as service team) in leading IT companies in Malaysia selected using snowball sampling. Normality and reliability assessment was performed in the first stage utilising SPSS 22, and Confirmatory Factory Analysis (CFA) was performed with maximum likelihood estimation to assess the internal consistency, convergent validity, and discriminant validity. Finally, Structural Equation Model (SEM) and path analysis are conducted using AMOS 22. Results: The research findings demonstrated that technological change and IT infrastructure positively and significantly impact the organisation's productivity while IT knowledge management has significant but negative impact on organizational productivity of IT companies in Malaysia. Conclusion: The research concludes that all three factors plays important role in deciding organizational producvity. Recommendations, implications, limitations and future research avenues are discussed.

Design and Performance Evaluation of Impact Type Actuator Using Magnetic Force (자기력을 이용한 충격형 액추에이터의 설계 및 성능 평가)

  • Min, Hyun-Jin;Lim, Hyung-Jun;Kim, Byung-Kyu;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1438-1445
    • /
    • 2002
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes have not been replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope that allows safe maneuverability in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfers momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjustment of impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulations show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

Design of HEV-Relay to Improve Impact and Bounce Characteristics (충격 및 바운스 특성 향상을 위한 HEV-Relay의 설계)

  • Ko, Youn-Ki;Cho, Sang-Soon;Huh, Hoon;Lee, Sang-Yoeb;Park, Hong-Tae;Oh, Il-Sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.491-496
    • /
    • 2008
  • A HEV-relay plays a significant role as a mechanical switch which determines the operation of a gasoline engine or an electric motor in a hybrid electric vehicle (HEV). The HEV-relay has critical two problems in the operating process. First, the unstable current can occur in the operating process of the HEV-relay due to the severe bounce between moving and fixed electrode. Second, noises occur due to impact between electrodes in HEV-relay. In this research, spring properties such as stiffness and initial compression force, and electrode shape are designed to reduce the bounce time and noises caused by impact between moving and fixed electrode. The operating process of HEV-relay is simulated using LS-DYNA3D as explicit finite element code. The optimum spring properties are determined using the response surface method (RSM) as the design methodology, and the electrode shape is newly designed through the modifying the stiffness of moving and fixed electrode.

  • PDF

Design and Application of an Analysis-frame Linking EIA and CBA (환경영향평가와 비용편익분석의 연계를 위한 분석 틀 설계 및 적용)

  • Ahn, So-Eun;Kim, Ji-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.565-574
    • /
    • 2011
  • This paper aims to design a policy-assessment tool liking the Environmental Impact Assessment(EIA) and the Cost Benefit Analysis (CBA). As a step towards the incorporation of environmental and economic considerations, the approach used herein takes the form of integrating quantitative information on environmental benefits and costs associated with implementing the project into the existing framework of the EIA. Our case study is an project appraisal of a solar energy plant. It is confirmed that the technique is operational, however, there are certain limitations for a complete assessment. The difficulty mainly originated from the omission of important information from each step of the valuation process. Alternatively stated, some environmental services are not identified, nor quantified, and nor monetized in the process. More case studies are warranted in the future along with elaboration in methodology of techniques. In addition, the construction of a database on environmental values will be required to accumulate reliable and systematized data. These are the necessary conditions to improving quality in application of techniques as well as providing comprehensive and balanced information to decision makers.

CFD Analysis to Estimate Drop Time and Impact Velocity of a Control Rod Assembly in the Sodium Cooled Faster Reactor (소듐냉각고속로 제어봉집합체의 낙하시간 및 충격속도 예측을 위한 CFD 해석)

  • Kim, JaeYong;Yoon, KyungHo;Oh, Se-Hong;Ko, SungHo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.5-11
    • /
    • 2015
  • In a pressurized water reactor (PWR), control rod assembly (CRA) falls into the guide tubes of a fuel assembly due to gravity for scram. Various theoretical approaches and numerical analyses have been performed because its shape is simple and its design was completely developed several decades ago. A control rod assembly for a sodium-cooled faster reactor (SFR) which is geometrically more complicated is being actively developed in Korea nowadays. Drop time and impact velocity of a CRA are important parameters with respect to reactivity insertion time and the mechanical robustness of a CRA and a guide duct. In this paper, computational method considering simultaneously the equation of motion for rigid body and the Navier-Stokes equations for fluid is suggested and verified by comparison with theoretical analysis results. Through this valuable CFD analysis method, drop time and impact velocity of initially designed SFR CRA are evaluated before performing scram tests with it.

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

Optimal Design of Passenger Airbag Door System Considering the Tearseam Failure Strength (티어심 파손 강도를 고려한 동승석 에어백 도어시스템의 최적 설계)

  • Choi, Hwanyoung;Kong, Byungseok;Park, Dongkyou
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.60-68
    • /
    • 2021
  • Invisible passenger airbag door system of hard panel types must be designed with a weakened area such that the side airbag will deploy through the instrument panel as like intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test. If the advanced airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of invisible passenger airbag (IPAB) door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. It was introduced the 'Operating Window' idea from quality engineering to design the hard panel types of IPAB door system applied to the advanced airbag for optimal deployment and head impact performance. Zigzab airbag folding and 'n' type PAB mounting bracket were selected.

Seismic performance of a building base-isolated by TFP susceptible to pound with a surrounding moat wall

  • Movahhed, Ataallah Sadeghi;Zardari, Saeid;Sadoglu, Erol
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.87-100
    • /
    • 2022
  • Limiting the displacement of seismic isolators causes a pounding phenomenon under severe earthquakes. Therefore, the ASCE 7-16 has provided minimum criteria for the design of the isolated building. In this research the seismic response of isolated buildings by Triple Friction Pendulum Isolator (TFPI) under the impact, expected, and unexpected mass eccentricity was evaluated. Also, the effect of different design parameters on the seismic behavior of structural and nonstructural elements was found. For this, a special steel moment frame structure with a surrounding moat wall was designed according to the criteria, by considering different response modification coefficients (RI), and 20% mass eccentricity in one direction. Then, different values of these parameters and the damping of the base isolation were evaluated. The results show that the structural elements have acceptable behavior after impact, but the nonstructural components are placed in a moderate damage range after impact and the used improved methods could not ameliorate the level of damage. The reduction in the RI and the enhancement of the isolator's damping are beneficial up to a certain point for improving the seismic response after impact. The moat wall reduces torque and maximum absolute acceleration (MAA) due to unexpected enhancement of mass eccentricity. However, drifts of some stories increase. Also, the difference between the response of story drift by expected and unexpected mass eccentricity is less. This indicates that the minimum requirement displacement according to ASCE 7-16 criteria lead to acceptable results under the unexpected enhancement of mass eccentricity.

The Impact of Service Quality and Loyalty on Adoption and Use of Mobile Banking Services: Empirical Evidence from Central Asian Context

  • IVANOVA, Aisena;NOH, Grimm
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.75-86
    • /
    • 2022
  • The service industry has been acknowledged as a critical part of mobile banking services in recent years. This study examines the impact of e-service quality and loyalty on the intention to use and use behavior of mobile banking services in Mongolia, a Central Asian country. As a result, based on past research, a conceptual model was suggested. This study comprises 209 completed questionnaires from young Mongolians who own a bank account and a smartphone. The data was collected based on convenience sampling, and it was analyzed with SmartPLS software using a partial least squares-structural equation modeling (PLS-SEM) technique. The findings indicate that system quality, interface design, and security assurance have a significant positive impact on service quality; service quality has a positive impact on loyalty. Moreover, the results reveal that service quality and loyalty have a significant influence on the intention to use mobile banking services. The findings of this study suggest that local or international banks and financial institutions in Mongolia should consider system quality, interface design, and security concerns as key successors to building perceived security quality to retain current mobile banking users and attract new customers.