• Title/Summary/Keyword: impact design

Search Result 5,070, Processing Time 0.033 seconds

Development of Extra-large Hydraulic Breaker (초대형 유압브레이커 개발)

  • Ahn, Kyubok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3081-3086
    • /
    • 2015
  • Development of a extra-large hydraulic breaker, which could be used for a 100 ton-class excavator were carried out Hot-firing tests were carried out. Before designing a hydraulic breaker, the analysis method to predict the performance such as impact energy and impact rate were studied. Based on the analysis result, the design and manufacture of a extra-large hydraulic breaker were performed, and the breaker were confirmed to operate successfully. The data of impact energy and impact rate were measured during the operation of the breaker, and were compared with the analysis result. The analysis result of impact rate anticipated well the test data, but that of impact energy showed a large difference with the test data. The extra-large hydraulic breaker were successfully developed and the analysis method of impact energy will be updated taking into account friction, hydraulic circuit, etc.

Impact of Selling, General and Administrative Expenses on Financial Sustainability of IT Companies Listed in S&P 500

  • Seetharaman, Seetharaman;Pitta, Santhikumar;Moorthy, Krishna;Saravanan, Saravanan
    • Journal of Distribution Science
    • /
    • v.14 no.4
    • /
    • pp.13-20
    • /
    • 2016
  • Purpose - This paper attempts to determine the importance of financial sustainability and the impact of Selling, General and Administrative Expenses (SG&A) on the financial sustainability of the IT industry. Research design, data, and methodology - Primarily the impact of SG&A expenditure on the sales revenue, assets, gross margins and profit is ascertained. After that the impact of SG&A expenditure, sales revenue, assets, gross margins and profit on the financial sustainability i.e., return on assets is worked out. Finally the impacts of financial sustainability i.e., return on assets on total enterprise value and market valuation multiples are found out. Results - The empirical result shows that SG&A expenditure most strongly impacted sales revenue, assets, gross margins and profit positively. Financial sustainability impacted in mixed manner with SG&A expenditure, sales revenue, assets, gross margins and profit. Assets and gross margins have weak positive impact on financial sustainability. Sales revenue has no impact on financial sustainability. Finally financial sustainability had moderate positive impact on total enterprise value and had no impact on market valuation multiples. Conclusions - SG&A expense has moderate positive impact on the financial sustainability and magnitude is very low.

Performance of bridge structures under heavy goods vehicle impact

  • Zhao, Wuchao;Qian, Jiang;Wang, Juan
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.515-525
    • /
    • 2018
  • This paper presents a numerical study on the performance of reinforced concrete (RC) bridge structures subjected to heavy goods vehicle (HGV) collision. The objectives of this study are to investigate the dynamic response and failure modes of different types of bridges under impact loading as well as to give an insight into the simplified methods for modeling bridge structures. For this purpose, detailed finite-element models of HGV and bridges are established and verified against the full-scale collision experiment and a recent traffic accident. An intensive parametric study with the consideration of vehicle weight, vehicle velocity, structural type, simplified methods for modeling bridges is conducted; then the failure mode, impact force, deformation and internal force distribution of the validated bridge models are discussed. It is observed that the structural type has a significant effect on the force-transferring mechanism, failure mode and dynamic response of bridge structures, thus it should be considered in the anti-impact design of bridge structures. The impact force of HGV is mainly determined by the impact weight, impact velocity and contact interface, rather than the simplification of the superstructure. Furthermore, to reduce the modeling and computing cost, it is suggested to utilize the simplified bridge model considering the inertial effect of the superstructure to evaluate the structural impact behavior within a reasonable precision range.

Application of Geographical Information System on Golf Course Design for Reduction of Environmental Impacts (지형정보시스템기법을 이용한 친환경적 골프코스 설계)

  • Joo, Young-Kyoo;Lee, Whal-Hee;Lee, Mu-Chun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.93-105
    • /
    • 2006
  • The construction of golf courses has had adverse effects on the natural landscape and delicate ecosystem of Korea. Efficiency in planning and design was necessary to minimize the environmental impact of the original construction. However, the ordinal design methods have limited the data processing by the massive scale of the project of golf course development. Conventional design methods did not have a proper tool for alternative plans on pre-estimation of landscape destruction or minimizing of the environmental impact. Therefore, advanced computerized techniques need to be adapted for golf course design to solve the problems concerning the environmental impacts. Geographic information system (GIS) was applied on the process of geographical data input and analysis through the final outputs. Simulation works by the total database management enable the pre-investigation of the design In view of an assessment of environmental impacts. It is also possible to evaluate plans easily and propose the alternatives properly. Precise quantity calculation of engineering works by computer system should be guaranteed scientific, economic, and environmentally-sound.

A Study on Dynamic Behavior of Guardrail Associated with Design Variables (설계변수에 의한 가아드레일의 동력학적 거동에 관한 연구)

  • Woo, K. S.;Ko, M. G.;Cho, S. H.;Kim, W.
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.89-99
    • /
    • 1994
  • The nonlinear dynamic behaviors of guardrail established on the local or high way have been investigated using BARRIER VII program with respect to four design variables such as section type of beams and posts, impact angle, impact velocity and vehicle weight. Computer simulation programs are sophisticated analytical models for analyzing dynamic vehicle/barrier interactions and provide a relatively inexpensive alternative to full scale crash testing. This study has been focused on the structural adequacy, occupant risk, and vehicle trajectory. For this purpose, the maximum defection and impact force have been calculated to design the clear zone and to analyze effect of impact attenuation. Also, the acceleration of vehicle and exit angle after collision have been computed to estimate the occupant risk. From this study, it is suggested that we should strengthen the design criteria of guardrail to prevent from disastrous traffic accidents.

  • PDF

Computation of Design Pressure against the Bow Bottom Slamming Impact (선수부 선저 슬래밍 충격에 대비한 설계압력의 산출)

  • Kim, Yong Jig;Lee, Seung-Chul;Ha, Youngrok;Hong, Sa Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.187-195
    • /
    • 2018
  • Ship's bottom slamming has been studied by many researchers for a very long time. But still some ships suffer structure damages caused by the bottom slamming impacts. This paper presents a practical computation method of the design impact pressure due to ship's bow bottom slamming. Large heave and pitch motions of a rigid hull ship are simulated by the nonlinear strip method in time domain and the relative colliding velocity between the bow bottom and the water surface is calculated using the simulated ship motions. The bottom slamming impact pressure is calculated as a product of the relative colliding velocity squared and the bottom slamming pressure coefficient that is obtained by modification of the SNAME pressure coefficients based on Ochi's slamming experiments. Not only the bottom slamming pressures but also the required bottom plate thicknesses are calculated and compared with those of the classification society rules. The comparisons show good agreements and it is confirmed that the present method is practically very useful for the bottom structure design against ship's bow bottom slamming impacts.

A Theoretical Study for the Formulation Design of PBX(I) (복합화약 조성설계에서의 이론적 연구(I))

  • Shim, Jung-Seob;Kim, Hyoun-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • A Plastic Bonded Explosive(PBX) is mainly composed of nitramine explosive and polymer binder. The great number of serious applications of PBX requires the good adhesion between nitramine crystals and binder, which depends on the surface characteristics of a filler and binder. In the pursuit of the better design to achieve the enhanced adhesion, profound knowledge of the surface and interfacial characteristics of explosive and binder should be exploited. In this study, the influences of physicochemical properties between RDX and binders such as interfacial tension($\gamma_{SL}$), latent heat($Q_m$), and density($\rho$) on impact sensitivity of PBX were investigated. As experimental results, the major contribution factor to impact sensitivity of PBX was the interfacial tension, compare with other surface properties. The correlation coefficient of $H_{50}$ versus $\gamma_{SL}$ is 0.9932 when a polynomial regression method was used.

Design of a Variable-Stiffness Type Safety Joint for Service Robots (서비스 로봇용 가변강성 형 안전관절의 설계)

  • Jeong, Jae-Jin;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.128-134
    • /
    • 2009
  • This paper aims to design a variable-stiffness type economical safety joint for service robots. The safety joint was designed to have a passive shock absorbing mechanism for protecting human from a catastrophic collision under service condition of robots. A simple mechanism composed of two action disks for switching the load transfer, a spring and a screw for pre-load was proposed. In order to evaluate the performance of the safety joint a testing platform which can carry out the static and impact tests was also designed and fabricated. From the test results, the designed safety joint was proved to have a variable load-carrying capacity and about 42% impact absorption capacity with simple manipulation of the control screw.

Design Optimization of Safety Barrier Consisting of Steel Rail and CFRP Post (강재 레일과 CFRP 기둥으로 이루어진 방호울타리의 최적화 설계)

  • Kim, Jung Joong;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2013
  • In this study a hybrid safety barrier system consisting of steel rail and carbon fiber reinforced polymer (CFRP) post is considered. W hile CFRP post is selected for impact energy reflection due to its high strength, steel rail is selected for impact energy absorption due to its high ductility. A numerical model considering the elastoplastic behavior of steel is formulated to simulate the dynamic responses of the hybrid system subject to an impact load. A hybrid roadside guard rail system of steel rail and CFRP post is proposed and analyzed with a case study. The numerical model for the hybrid roadside guard rail system is used to find optimized design of the proposed hybrid system.

Analysis of Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in Turning Operation for Environmentally Conscious Machining (I)

  • Joon Hwang;Chung, Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2003
  • This paper presents the experimental results to verify the environmental consciousness with economic balances due to cutting fluid behaviors and effectiveness in machining process. The cutting fluid improves the productivity through cooling, lubricating effects, however its environmental impact also increases according to the cutting fluid usage. The primary mechanism in this study is the spin-of motion of cutting fluids away from the rotating workpiece. In this study some machining parameters are adopted to analyze the productivity as well as environmental impact. This study provides the criteria for the resonable cutting fluid usage quantitatively to develop the environmentally conscious machining process.