• Title/Summary/Keyword: impact damages

Search Result 310, Processing Time 0.026 seconds

Development of Road-Map on Evaluation of Fire Resistance Performance (건축물 내화성능평가 표준화 로드맵 개발)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.50-58
    • /
    • 2009
  • Fire can cause severe damages to human lives, properties, and environment resources regardless to where the fire will be happened and the evaluation methods for fire impact against fire objects such as human, properties are different among nations around the world. ISO TC 92 (Fire safety) has 4 sub committees to develop international standard to harmonize each nation standards and evaluate fire impact and the experts from all around the world participate in preparing international standards on fire. The main purpose of this study is to suggest a new road-map for domestic fire resistant standard of building structures. To make a new road-map two activities of the ISO's major committees and the countermeasures of fire safety from our standards were investigated.

A Study of Emergency Response for the Leakage Accident of Hazardous and Noxious Substances in a Port (항만에서의 위험·유해물질(HNS) 누출사고 대응에 관한 연구)

  • Woo, Young Jin;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.32-38
    • /
    • 2016
  • In general, lots of containers including various dangerous materials are transported to the port located in big cities such as Busan where massive residents live. Thus, it's really important how to make the emergency response for the leak accidents of dangerous materials and evaluate the direct or indirect damages to adjacent areas. In this study, in order to make reasonable emergency plans, CA (Consequence Analysis) is employed after selecting a key hazardous and noxious material, hydrogen fluroide. This material accounts for the third largest portion of cargo volume among all dangerous materials and can cause a huge damage in case of leakages. As a case study, Busan North port is selected as a test port since the portion of dangerous materials is higher than that of other ports in Busan. It is assumed that 1 ton of hydrogen fluoride is spilled at Busan North port. CA is performed to assess the impact of this accident. Throughout CA, the ERPG-2 range of a leak accident can be evaluated and this result can be used for decision making tools for mitigating the impact of a leak accident. To mitigate the damage of this accident, suitable a protective equipment and resident evacuation procedures should be prepared. Finally, this study can provide a systematic approach to make the emergency plan for reducing economical and personal losses.

Investigation on Damage Tolerance of Thick Laminate for Aircraft Composite Structure (항공기 복합재 구조에 적용된 두꺼운 적층판의 손상 허용 기준 평가)

  • Park, Hyun-Bum;Kong, Chang-Duk;Shin, Chul-Jin
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.105-109
    • /
    • 2012
  • Recently, development of a small aircraft has been carried out for the BASA(Bilateral Aviation Safety Agreement) program in Korea. This aircraft adopted all composite structures for environmental friendly by low fuel consumption due to its lightness behavior. However the composite structure has disadvantage which is very weak against impact damages. Therefore, damage allowable design of aircraft structure must be performed considering compressive fracture strength. This point is very important for certification of composite structure aircraft. In this paper, it is performed the research on damage tolerance of thick laminate adopting aircraft structure. The damage tolerance of three different types of thick laminates such as no damage, open hole and impact damage is evaluated under compression loading.

Assessment of Flood Impact on Downstream of Reservoir Group at Hwangryong River Watershed (황룡강 유역 저수지군 하류하천 영향평가)

  • Hwang, Soon-Ho;Kang, Moon-Seong;Kim, Ji-Hye;Song, Jung-Hun;Jun, Sang-Min;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.103-111
    • /
    • 2012
  • Works for dam heightening plan have dual purposes: flood disaster prevention by securing additional storage volume and river ecosystem conservation by supplying stream maintenance flow. Now, the dam heightening project is in progress and there are 93 dam heightened reservoir. After the dam heightening project, 2.2 hundred million ton of flood control volume in reservoirs will be secured. Thus it is necessary to evaluate the effects of the dam heightening project on watershed hydrology and stream hydraulics, and resulting flood damages. This study was aimed to assess the impact of outflow from the dam heightened reservoir group on the Whangryong river design flood. The HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System) model was used for estimating flood discharge, while HEC-5 (Hydrologic Engineering Center-5) was used for reservoir routing. This study analysed flood reduction effect on 100yr and 200yr return periods about the before and after heightening of agricultural dams. Based on the results of this study, the reduction of flood peak discharge at downstream of the reservoir group was estimated to be about 41% and 53% for 100yr and 200yr frequencies, respectively.

Statistical damage classification method based on wavelet packet analysis

  • Law, S.S.;Zhu, X.Q.;Tian, Y.J.;Li, X.Y.;Wu, S.Q.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.459-486
    • /
    • 2013
  • A novel damage classification method based on wavelet packet transform and statistical analysis is developed in this study for structural health monitoring. The response signal of a structure under an impact load is normalized and then decomposed into wavelet packet components. Energies of these wavelet packet components are then calculated to obtain the energy distribution. Statistical similarity comparison based on an F-test is used to classify the structure from changes in the wavelet packet energy distribution. A statistical indicator is developed to describe the damage extent of the structure. This approach is applied to the test results from simply supported reinforced concrete beams in the laboratory. Cases with single and two damages are created from static loading, and accelerations of the structure from under impact loads are analyzed. Results show that the method can be used with no reference baseline measurement and model for the damage monitoring and assessment of the structure with alarms at a specified significance level.

Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load (차량 충돌하중을 받는 RC 압축부재의 성능기반형 저항성능 평가방법 개발)

  • Kim, Jang-Ho Jay;Yi, Na-Hyun;Phan, Duc-Hung;Kim, Sung-Bae;Lee, Kang-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2010
  • Recently, the probability of collision accident between vehicles or vessels and infrastructures are increasing at alarming rate. Particularly, collision impact load can be detrimental to sub-structures such as piers and columns. The damaged pier from an impact load of a vehicle or a vessel can lead to member damages, which make the member more vulnerable to impact load due to other accidents which. In extreme case, may cause structural collapse. Therefore, in this study, the vehicle impact load on concrete compression member was considered to assess the quantitative design resistance capacity to improve, the existing design method and to setup the new damage assessment method. The case study was carried out using the LS-DYNA, an explicit finite element analysis program. The parameters for the case study were cross-section variation of pier, impact load angle, permanent axial load and axial load ratio, concrete strength, longitudinal and lateral rebar ratios, and slenderness ratio. Using the analysis results, the performance based resistance capacity evaluation method for impact load using satisfaction curve was developed using Bayesian probabilistic method, which can be applied to reinforced concrete column design for impact loads.

A Comparison Study of Direct Impact Analysis of Vehicle to Concrete Pier and In-Direct Impact Analysis using Load-Time History Functions (차량과 콘크리트 교각의 직접충돌해석법과 충돌하중이력곡선을 이용한 간접충돌해석법 비교연구)

  • Kim, WooSeok;Kim, Kyeongjin;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.533-542
    • /
    • 2014
  • In design standards such as AASHTO LRFD and Korea Highway Bridge Design, the dynamic behaviors under the impact loading has not been considered and it recommends of using a static force for designing bridge column against vehicle collisions. Accordingly, in this study, models of vehicle collisions to concrete bridge column were developed with various boundary conditions in order to take into account dynamic behaviour of the column. Cargo trucks of 10tons, 16tons and 38tons were selected and a typical type of concrete bridge pier column along the Kyungbu highway in Korea was selected for this study. Results from this study indicate that the static load specified in the design standards are too small compared to results obtained in this study. It was also found that a consideration of the bridge superstructure allowed smaller damages of concrete bridge pier column under truck impact loadings. Furthermore, a comparison study of direct impact analysis of vehicle to bridge-column with in-direct impact analysis using load-time history functions was performed. The in-direct impact analysis shows that the use of load-time history graph improves the computational cost up to 92% and predict the behaviors of the bridge column under the impact loadings well. The obtained load-time history graph could be easily applied to several existing models.

Analysis of Heavy Rain Hazard Risk Based on Local Heavy Rain Characteristics and Hazard Impact (지역 호우특성과 재해영향을 고려한 호우재해위험도 분석)

  • Yoon, Jun-Seong;Koh, June-Hwan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.37-51
    • /
    • 2017
  • Despite the improvement in accuracy of heavy rain forecasting, socioeconomic costs due to heavy rain hazards continue to increase. This is due to a lack of understanding of the effects of weather. In this study, the risk of heavy rain hazard was analyzed using the concepts of hazard, vulnerability, and exposure, which are key concepts of impact forecast presented by WMO. The potential impacts were constructed by the exposure and vulnerability variables, and the hazard index was calculated by selecting three variables according to the criteria of heavy rain warning. Weights of the potential impact index were calculated by using PCA and hazard index was calculated by applying the same weight. Correlation analysis between the potential impact index and damages showed a high correlation and it was confirmed that the potential impact index appropriately reflects the actual damage pattern. The heavy rain hazard risk was estimated by using the risk matrix consisting of the heavy rain potential impact index and the hazard index. This study provides a basis for the impacts analysis study for weather warning with spatial/temporal variation and it can be used as a useful data to establish the local heavy rain hazard prevention measures.

Study on Material Fracture and Debris Dispersion Behavior via High Velocity Impact (고속충돌에 따른 재료 파괴 및 파편의 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1065-1075
    • /
    • 2017
  • In this study, high velocity impact tests along with modeling of material behavior and numerical analyses were conducted to predict the dispersion behavior of the debris resulting from a high velocity impact fracture. For the impact tests, two different materials were employed for both the projectile and the target plate - the first setup employed aluminum alloy while the second employed steel. The projectile impacts the target plate with a velocity of approximately 1 km/s were enforced to generate the impact damages in the aluminum witness plate through the fracture debris. It was confirmed that, depending on the material employed, the debris dispersion behavior as well as the dispersion radii on the witness plate varied. A numerical analysis was conducted for the same impact test conditions. The smoothed particle hydrodynamics (SPH)-finite element (FE) coupled technique was then applied to model the fracture and damage upon the debris. The experimental and numerical results for the diameters of the perforation holes in the target plate and the debris dispersion radii on the witness plate were in agreement within a 5% error. In addition, the impact test using steel was found to be more threatening as proven by the larger debris dispersion radius.

Research Methodology for the Economic Impact Assessment of Natural Disasters and Its Applicability for the Baekdu Mountain Volcanic Disaster (자연재해의 경제적 영향평가 연구방법론과 백두산화산재해에의 적용 가능성)

  • Jiang, Zhuhua;Yu, Soon-Young;Yoon, Seong-Min
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.133-146
    • /
    • 2014
  • There are many studies for the economic impact assessment of natural disasters, but there are few for volcanic disasters. Domestic academic research is not under active discussion because of the lack of national and social interest for volcanic eruption. This study investigated the research methodology for the economic impact assessment of natural disasters and discussed whether these can be applied to the economic impact analysis for the Baekdu Mountain volcanic disaster. The main findings are as follows: Firstly, Asia-Pacific region is the most affected by natural disasters and has the largest scale of damage. Asian and American Continent have the most economic damage. Secondly, Considering the types of damage caused by natural disasters and its complex structure, several methodologies that could be possible to estimate economic consequential damages have been compared. When applying each methodology to the Baekdu Mountain volcanic disaster, the scale of damage is likely to be over-estimated or under-estimated because of model-specific features. Thus, estimated values should be compared to each other after calculating the damage results. Thirdly, Japanese academic research on the volcanic disaster will be used as the starting point of the economic impact assessment studies for Baekdu Mountain. Using computer SW such as Hazus which is used in United States and RiskScape from New Zealand is also a good method to predict economic impact of the Baekdu Mountain volcanic disaster.