• Title/Summary/Keyword: impact coefficient

Search Result 1,064, Processing Time 0.023 seconds

Dynamic response of imperfect functionally graded plates: Impact of graded patterns and viscoelastic foundation

  • Hafida Driz;Amina Attia;Abdelmoumen Anis Bousahla;Farouk Yahia Addou;Mohamed Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi;Mohammed Balubaid;S.R. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.551-565
    • /
    • 2024
  • This study presents a methodical investigation into improving structural designs through the analytical examination of the dynamic behavior of functionally graded plates (FGPs) resting on viscoelastic foundations. By employing a four variable first-order shear deformation theory, the study computes non-dimensional frequencies for a variety of porous FGPs with diverse graded patterns and porosity distributions. Different gradient patterns of the plates are considered, and three distinct functions-sigmoid (S-FGM), exponential (E-FGM), and power-law (P-FGM)-are utilized to assess material performance in specific directions. The equations of motion are derived and solved using both Navier's method and Hamilton's principle. Analytical solutions for vibration frequency are provided to validate the proposed methodology against existing literature. Furthermore, a comprehensive parametric analysis is conducted, taking into account various factors such as ceramic material, porosity distribution, gradient index, length-to-thickness ratio, gradient pattern, and damping coefficient. The findings suggest that enhancing the damping coefficient of the viscoelastic foundation can significantly improve the free-vibrational response of functionally graded material plates.

Experimental examination on physical and radiation shielding features of boro-silicate glasses doped with varying amounts of BaO

  • M.I. Sayyed;Abdelmoneim Saleh;Anjan Kumar;Fatma Elzahraa Mansour
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3378-3384
    • /
    • 2024
  • Investigations were conducted on the addition of barium's impact on the radiation shielding and physical attributes of five different glasses, designated S1-S5, with varying BaO contents. Using two point sources namely Co60 and Cs137 along with a scintillation detector [NaI(TL)], experimental measurements were made of the shielding parameters of γ-rays, namely the effective atomic number (Zeff), electron density (Nel), half-value layer (HVL), linear attenuation coefficient (μ), mass attenuation coefficient (μm), mean free path (λ), and radiation protection effectiveness at the energies of 0.664, 1.177, and 1.334 MeV, and comparisons made with recently considered glasses as well as frequently employed materials for γ-ray shielding. The results show that the examined glasses' physical and radiation shielding qualities are improved by the addition of BaO. The μ values increased from 0.245 to 0.275 cm-1 (0.662 MeV), from 0.174 to 0.198 cm-1 (1.173 MeV), and from 0.161 to 0.189 (1.332 MeV). The observed values of HVL decreased from 2.83, 3.98, and 4.3 cm to 2.5, 3.5, and 3.62 cm at 0.662, 1.173, and 1.332 MeV, respectively, for the samples S1 and S5. In addition, the S5 glass sample was determined to have the best protection against photon among all the samples that were evaluated, as well as against recently considered glasses and those materials often utilized for gamma-ray shielding purposes.

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

Successful seroconversion against diphtheria and tetanus induced through maternal vaccination in a region of Colombia

  • Doracelly Hincapie-Palacio;Adriana Echeverri;Cristina Hoyos;Felipe Vargas-Restrepo;Marta Ospina;Seti Buitrago;Jesus Ocho
    • Clinical and Experimental Vaccine Research
    • /
    • v.11 no.1
    • /
    • pp.72-81
    • /
    • 2022
  • Purpose: This study aims to compare protection against diphtheria and tetanus conferred on the mother and the neonate before and after maternal vaccination against tetanus, diphtheria, and acellular pertussis (Tdap), transfer of antibodies, and the variables that could impact on the protection. Materials and Methods: The study followed a cohort of 200 pregnant women from a region in Colombia, contacted during prenatal control before vaccination and upon delivery. The work determined immunoglobulin G antibodies against diphtheria and tetanus of pregnant women and umbilical cord. The proportion of protection, the geometric mean of the concentration, and the transfer of maternal antibodies were calculated. The protection profile of the pregnant women was explored by using multiple correspondence analysis. Results: The concentration of antibodies against diphtheria was significant before and after vaccination of the pregnant women (p=0.000) with proportions of 85.0% and 97.5%, respectively, and of 98.6% in the umbilical cord, with significant antibody correlation (Spearman's coefficient=0.668, p=0.01). Sero-protection against tetanus before vaccination was at 71.0%, after at 92.6%, and in the umbilical cord at 95.9%, with significant antibody concentration before and after vaccination (p=0.000) and antibody correlation (Spearman's coefficient=0.936, p=0.01). Sero-protection was higher when the pregnant women were vaccine 8 to 11 weeks before delivery. Unprotected pregnant women were those not vaccinated during pregnancy. Conclusion: The high proportion of protection against diphtheria and tetanus and the placental transfer support the need to promote maternal immunization with Tdap.

An Economic Factor Analysis of Air Pollutants Emission Using Index Decomposition Methods (대기오염 배출량 변화의 경제적 요인 분해)

  • Park, Dae Moon;Kim, Ki Heung
    • Environmental and Resource Economics Review
    • /
    • v.14 no.1
    • /
    • pp.167-199
    • /
    • 2005
  • The following policy implications can be drawn from this study: 1) The Air Pollution Emission Amount Report published by the Ministry of Environment since 1991 classifies industries into 4 sectors, i. e., heating, manufacturing, transportation and power generation. Currently, the usability of report is very low and extra efforts should be given to refine the current statistics and to improve the industrial classification. 2) Big pollution industries are as follows - s7, s17 and s20. The current air pollution control policy for these sectors compared to other sectors are found to be inefficient. This finding should be noted in the implementation of future air pollution policy. 3) s10 and s17 are found to be a big polluting industrial sector and its pollution reduction effect is also significant. 4) The effect of emission coefficient (${\Delta}f$) has the biggest impact on the reduction of emission amount change and the effect of economic growth coefficient (${\Delta}y$) has the biggest impact on the increase of emission volume. The effect of production technology factor (${\Delta}D$) and the effect of the change of the final demand structure (${\Delta}u$) are insignificant in terms of the change of emission volume. 5) Further studies on emission estimation techniques on each industry sector and the economic analysis are required to promote effective enforcement of the total volume control system of air pollutants, the differential management of pollution causing industrial sectors and the integration of environment and economy. 6) Korea's economic growth in 1990 is not pollution-driven in terms of the Barry Commoner's hypothesis, even though the overall industrial structure and the demand structure are not environmentally friendly. It indicates that environmental policies for the improvement of air quality depend mainly on the government initiatives and systematic national level consideration of industrial structures and the development of green technologies are not fully incorporated.

  • PDF

An Efficient Analytical Model for Floor Vibrations in Residential Buildings with Damping layer (방진층을 설치한 주거용 건축물 바닥판의 진동해석을 위한 효율적인 해석모형)

  • Lee, Dong-Guen;Kim, Tae-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.49-61
    • /
    • 2006
  • The floor impact sound insulations are installed frequently for reducing the floor impact sound into the floor slab of the residential buildings in recent years. Therefore the analytical FE model considering the insulation is needed for the sound and vibration analysis of the floor and it is necessary to use a refined finite element model fer considering the large number of modes involved dynamic responses. So it is very difficult to use FE model because of the tiresome task for constructing the FE model, taking a lot of times for analysis and the impossibility of using the proportional damping. The efficient analysis and modeling method are proposed to the dynamic analysis for the floor with damping layer in this study. The floor slabs and finished layers are modeled individually and the spring elements that mean damping layers used to connect two parts. The dynamic analysis by the $Newmark-{\beta}$ method is performed to solve the non-proportional damping problem due to the damping coefficient of insulations.

Assessment of Trophic State for Daecheong reservoir Using Landsat TM Imagery Data (Landsat TM 영상자료를 이용한 대청호의 영양상태 평가)

  • Han, E.J.;Kim, K.T.;Jeong, D.H.;Cheon, S.Y.;Kim, S.J.;Yu, S.J.;Hwang, J.Y.;Kim, T.S.;Kim, M.H.
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.1
    • /
    • pp.81-91
    • /
    • 1998
  • The objective of this study was to use remotely sensed data, combined with in situ data, for the assessment of trophic state for Daecheong reservoir. Three Landsat TM(Thematic Mapper) imagery data were processed to portray trophic state conditions. The remotely sensed data and the measured data were obtained on 20 June 1995. Regression models have been developed between the chlorophyll-a concentration and reflectance which was converted to Landsat TM digital data. The regression model was determined based on the correlation coefficient which was higher than 0.7 and was applied to the entire study area to generate a distribution map of chlorophyll-a and trophic state. The equation, providing estimates of chlorophyll-a concentration, represented the year-to-year spatial variation of trophic zones in the reservoir. Satellite remote sensing data derived from Landsat TM had been successfully used for trophic slate mapping in Daecheong reservoir.

  • PDF

Estimation of Ammonia Flux and Emission Factor from the Cattle Housing of Fall and Winter (소사육시설에서 가을철과 겨울철의 암모니아 플럭스 및 배출계수 산정에 관한 연구)

  • Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • Ammonia ($NH_3$) is an important pollutant that plays a key role in several air pollution problems. It can create odors and have negative impacts on animal and human health. The largest source contributing to Ammonia emission is the agricultural production, in particular animal operation, in Korea. The present study evaluated flux profiles of Ammonia emitted from the cattle housing using a dynamic flux chamber. We have developed the emission factor of Ammonia from the cow housing. Analysis of Ammonia flux variation was made with respect to manure surface temperature, pH, and ammonium concentration. Ammonia has been measured from calf and cattle housing between October and December in 2007. In the fall, average Ammonia flux from calf and cattle housing was estimated 1.342(${\pm}0.728$) and 1.323(${\pm}0.655$)mg/$m^2$/min, respectively. In the winter, average Ammonia flux was estimated 0.889(${\pm}0.362$)mg/$m^2$/min from the calf housing and 0.925(${\pm}0.511$)mg/$m^2$/min from the cattle housing. The correlation coefficient between Ammonia flux and ammonium concentration showed stronger relationship than the relationship between manure pH and temperature. In the fall, Ammonia emission factor from calf and cattle housing was estimated 4.46(${\pm}2.39$) and 6.03(${\pm}3.27$)kg-$NH_3$/animal/yr, respectively. In the winter, average Ammonia flux was estimated 2.88(${\pm}1.53$) from the calf housing and 4.24({$\pm}1.63$)kg-$NH_3$/animal/yr from the cattle housing.

The Impact of Multi-dimensional Trust for Customer Satisfaction

  • Choi, Jae-Won;Sohn, Chang-Soo;Lee, Hong-Joo
    • Management Science and Financial Engineering
    • /
    • v.16 no.2
    • /
    • pp.81-97
    • /
    • 2010
  • Trust is one of the most important aspects of the relationship between retailers and consumers in e-commerce. Users may have concerns about transaction security or personal information leakage when they engage in transactions over the Internet. It can be difficult to attract customers if the retailers or service providers cannot establish trust with their customers. There have been many studies of trust-building mechanisms between customers and e-storefronts. However, little work has been done on identifying the relationships between customer satisfaction, purchase intention, and trust. In addition, trust building occurs in the pre- and post-purchase phases of an e-commerce transaction, as well as gradually over repeated transactions. Thus we distinguish between cue-based trust and experience-based trust. The objective of this study was to explain the impact of trust on customer satisfaction and purchase intention in relation to e-commerce sites from the perspective of a multi-dimensional concept of trust. We surveyed 350 undergraduate students and obtained 331 responses for analysis. The result of our analysis showed that cue-based trust has a positive relationship with trust based on experience. Although the two concepts of trust have positive relationships with satisfaction, the path coefficient of trust based on experience was higher than that of cue-based trust. In addition, the purchase intention mediates the relationship between cue-based trust and experience-based trust.

Assessing Climate Change Impact on Hydrological Components of Yongdam Dam Watershed Using RCP Emission Scenarios and SWAT Model (RCP 배출 시나리오와 SWAT 모형을 이용한 기후변화가 용담댐 유역의 수문요소에 미치는 영향 평가)

  • Park, Jong-Yoom;Jung, Hyuk;Jang, Cheol-Hee;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.19-29
    • /
    • 2014
  • This study was to evaluate the potential climate change impact on watershed hydrological components of evapotranspiration, surface runoff, lateral flow, return flow, and streamflow using Soil and Water Assessment Tool (SWAT). For Yongdam dam watershed (930 $km^2$), the SWAT model was calibrated for five years (2002-2006) and validated for three years (2004-2006) using daily streamflow data at three locations and daily soil moisture data at five locations. The Nash-Sutcliffe model efficiency (NSE) and coefficient of determination ($R^2$) were 0.43-0.67 and 0.48-0.70 for streamflow, and 0.16-0.65 and 0.27-0.76 for soil moisture, respectively. For future evaluation, the HadGEM3-RA climate data by Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios were adopted. The biased future data were corrected using 30 years (1982-2011, baseline period) of ground weather data. The HadGEM3-RA 2080s (2060-2099) temperature and precipitation showed increase of $+4.7^{\circ}C$ and +22.5 %, respectively based on the baseline data. The impacts of future climate change on the evapotranspiration, surface runoff, baseflow, and streamflow showed changes of +11.8 %, +36.8 %, +20.5 %, and +29.2 %, respectively. Overall, the future hydrologic results by RCP emission scenarios showed increase patterns due to the overall increase of future temperature and precipitation.