• Title/Summary/Keyword: impact coefficient

Search Result 1,064, Processing Time 0.027 seconds

Effects of Communication Competence and Nunchi on Interpersonal Harmony in Nursing Students (간호대학생의 의사소통 능력, 눈치가 대인관계조화에 미치는 영향)

  • Yang, Yoon-Suh;Hong, So-Hyoung;Ryu, Jeong-Lim
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.75-83
    • /
    • 2020
  • This study aims to investigate the effects of nursing students' communication competence and nunchi on their interpersonal harmony. One-hundred and seventy-eight third- and fourth-year nursing students attending one of B, H, H, J, K universities in the North Jeolla Province were surveyed using a self-reported questionnaire. Independent t-test, one way ANOVA and Pearson's correlation coefficient, Stepwise regression were performed on the collected data using SPSS 21.0 program. Results The results showed that communication competence had the greatest impact on interpersonal harmony, followed by nunchi andsatisfaction with nursing major, with these variables explaining for 55% of interpersonal harmony. Hence, strategies that improve communication competence, nunchi, and satisfaction with nursing major would be helpful for increasing interpersonal harmony.

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Shariati, Mahdi;Trung, Nguyen Thoi;Shariati, Morteza;Trnavac, Dragana
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.191-205
    • /
    • 2020
  • Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.

Pseudoglandular Formation in Hepatocellular Carcinoma Determines Apparent Diffusion Coefficient in Diffusion-Weighted MRI

  • Park, In Kyung;Yu, Jeong-Sik;Cho, Eun-Suk;Kim, Joo Hee;Chung, Jae-Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • Purpose: To determine the impact of pseudoglandular formation on apparent diffusion coefficient (ADC) values of hepatocellular carcinoma (HCC) in diffusion-weighted imaging (DWI), and to validate the results using histopathological grades. Materials and Methods: We assessed 182 HCCs surgically resected from 169 consecutive patients. Each type of tumor pseudoglandular formation was categorized into "non-," "mixed-," or "pure-," based on official histopathology reports. The ADC for each tumor was independently measured, using the largest region of interest on the ADC map. Data were assessed using the analysis of variance test, with Bonferroni correction for post hoc analysis to stratify the relationship of ADCs with pseudoglandular formation, followed by subgroup analysis according to the histopathological tumor grades. Results: The mean ADC was significantly higher in pure pseudoglandular lesions (n = 5, $1.29{\pm}0.08{\times}10^{-3}mm^2/s$) than in non-pseudoglandular lesions (n = 132, $1.08{\pm}0.17{\times}10^{-3}mm^2/s$; P = 0.003) or mixed-pseudoglandular lesions (n = 45, $1.16{\pm}0.24{\times}10^{-3}mm^2/s$; P = 0.034). The ADC values and pseudoglandular formation were significantly correlated in moderately differentiated HCCs (n = 103; r = 0.307, P = 0.007), while well- (n = 19) and poorly-differentiated HCCs (n = 60) did not show significant correlation (r = 0.105 and 0.068, respectively; P = 0.600 and 0.685, respectively). Conclusion: The degree of pseudoglandular formation could be one of the determinants of ADC in DWI of HCCs-especially moderately differentiated HCCs-while its influence does not appear to be significant in well- or poorly differentiated HCCs.

Exposure Assessment and Estimation of Nitrogen Dioxide on Office Worker Using Passive Monitor -Comparative Study of Seoul in Korea and Brisbane in Australia- (수동식 시료채취기를 이응한 사무실 직장인의 산화질소 노출평가 및 예측 -한국의 서울과 호주의 브리스베인 비교 연구-)

  • 양원호;손부순;김종오
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.247-255
    • /
    • 2002
  • Indoor and outdoor nitrogen dioxide (NO$_2$) concentrations were measured and compared with measurements of personal exposures of 95 persons in Seoul, Korea and 57 persons in Brisbane, Australia, respectively. Time activity diary was used to determine the impact on NO$_2$ exposure assessment and microenvironmental model to estimate the personal NO$_2$ exposure. Most people both Seoul and Brisbane spent their times more than 90% of indoor and more than 50% in home, respectively. Personal NO$_2$ exposures were significantly associated with indoor NO$_2$ levels with Pearson coefficient of 0.70 (p<0.01) and outdoor NO$_2$ levels with Pearson coefficient of 0.66 (p<0.01) in Seoul and of 0.51 (p<0.01) and of 0.33 (p<0.05) in Brisbane, respectively. Using microenvironmental model by time weighted average model, personal NO$_2$ exposures were estimated with NO$_2$ measurements in indoor home, indoor office and outdoor home. Estimated NO$_2$ measurements were significantly correlated with measured personal exposures (r = 0.69, p<0.001) in Seoul and in Brisbane (r = 0.66, p<0.001), respectively. Difference between measured and estimated NO$_2$ exposures by multiple regression analysis was explained that NO$_2$ levels in near workplace and other outdoors in Seoul (p = 0.023), and in transportation in Brisbane (p = 0.019) affected the personal NO$_2$ exposures.

Estimation of Inflow into Namgang Dam according to Climate Change using SWAT Model (SWAT 모형을 이용한 기후변화에 따른 남강댐 유입량 추정)

  • Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.9-18
    • /
    • 2017
  • The objective of this study was to estimate the climate change impact on inflow to Namgang Dam using SWAT (Soil and Water Assessment Tool) model. The SWAT model was calibrated and validated using observed flow data from 2003 to 2014 for the study watershed. The $R^2$ (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. Calibration results showed that the annual mean inflow were within ${\pm}5%$ error compared to the observed. $R^2$ were ranged 0.61~0.87, RMSE were 1.37~7.00 mm/day, NSE were 0.47~0.83, and RMAE were 0.25~0.73 mm/day for daily runoff, respectively. Climate change scenarios were obtained from the HadGEM3-RA. The quantile mapping method was adopted to correct bias that is inherent in the climate change scenarios. Based on the climate change scenarios, calibrated SWAT model simulates the future inflow and evapotranspiration for the study watershed. The expected future inflow to Namgang dam using RCP 4.5 is increasing by 4.8 % and RCP 8.5 is increasing by 19.0 %, respectively. The expected future evapotranspiration for Namgang dam watershed using RCP 4.5 is decreasing by 6.7 % and RCP 8.5 is decreasing by 0.7 %, respectively.

Development of Pulsating Type Electromagnetic Hammer Drive Systems (맥동파 전자해머 구동시스템의 개발)

  • Ahn, Dong-Jun;Nam, Hyun-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.269-274
    • /
    • 2016
  • This paper proposes the development of a low frequency electronic hammer drive system that is used to prevent scaling or clogging in the hopper process. The electro-mechanical hammering driving method involves the generation of vibration and impact energy. The operation principles of the electromagnetic hammer were considered by parallel/series spring coefficient analysis and the amount of kinetic energy generated was calculated from the product of the equivalent spring constant, which is coupled with the E core and the gap of between the E core and I core. In addition, the Pulsation Driving algorithm was applied to the proposed electromagnetic hammer to obtain the maximizing kinetic energy. This algorithm was then implemented by a logical AND operation process and micro-controller (atmega128) built in functions with a timer interrupt and PWM generation function. The driving circuit of the electromagnetic hammer was designed using the H-bridge type IGBT circuit. The experimental test was performed by usefulness of the developed electromagnetic hammer systems with the acceleration measurement method. The experimental result showed that the proposed system has good kinetic energy generation performance and can be applied to the hopper process.

Accessing socio-economic and climate change impacts on surface water availability in Upper Indus Basin, Pakistan with using WEAP model.

  • Mehboob, Muhammad Shafqat;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.407-407
    • /
    • 2019
  • According to Asian Development Bank report Pakistan is among water scarce countries. Climate scenario on the basis IPCC fifth assessment report (AR5) revealed that annual mean temperature of Pakistan from year 2010-2019 was $17C^o$ which will rise up to $21C^o$ at the end of this century, similarly almost 10% decrease of annual rainfall is expected at the end of the century. It is a changing task in underdeveloped countries like Pakistan to meet the water demands of rapidly increasing population in a changing climate. While many studies have tackled scarcity and stream flow forecasting of the Upper Indus Basin (UIB) Pakistan, very few of them are related to socio-economic and climate change impact on sustainable water management of UIB. This study investigates the pattern of current and future surface water availability for various demand sites (e.g. domestic, agriculture and industrial) under different socio-economic and climate change scenarios in Upper Indus Basin (UIB) Pakistan for a period of 2010 to 2050. A state-of-the-art planning tool Water Evaluation and Planning (WEAP) is used to analyze the dynamics of current and future water demand. The stream flow data of five sub catchment (Astore, Gilgit, Hunza, Shigar and Shoyke) and entire UIB were calibrated and validated for the year of 2006 to 2011 using WEAP. The Nash Sutcliffe coefficient and coefficient of determination is achieved ranging from 0.63 to 0.92. The results indicate that unmet water demand is likely to increase severe threshold and the external driving forces e.g. socio-economic and climate change will create a gap between supply and demand of water.

  • PDF

The Effects of Seismic Failure Correlations on the Probabilistic Seismic Safety Assessments of Nuclear Power Plants (지진 손상 상관성이 플랜트의 확률론적 지진 안전성 평가에 미치는 영향)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil;Jeon, Bub-Gyu;Park, Dong-Uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.53-58
    • /
    • 2021
  • Nuclear power plant's safety against seismic events is evaluated as risk values by probabilistic seismic safety assessment. The risk values vary by the seismic failure correlation between the structures, systems, and components (SSCs). However, most probabilistic seismic safety assessments idealized the seismic failure correlation between the SSCs as entirely dependent or independent. Such a consideration results in an inaccurate assessment result not reflecting real physical phenomenon. A nuclear power plant's seismic risk should be calculated with the appropriate seismic failure correlation coefficient between the SSCs for a reasonable outcome. An accident scenario that has an enormous impact on a nuclear power plant's seismic risk was selected. Moreover, the probabilistic seismic response analyses of a nuclear power plant were performed to derive appropriate seismic failure correlations between SSCs. Based on the analysis results, the seismic failure correlation coefficient between SSCs was derived, and the seismic fragility curve and core damage frequency of the loss of essential power event were calculated. Results were compared with the seismic fragility and core damage frequency of assuming the seismic failure correlations between SSCs were independent and entirely dependent.

Comparison of the concentration characteristics and optical properties of aerosol chemical components in different regions (지역별 에어로졸 화학성분 농도 및 광학특성 비교)

  • So, Yun-Yeong;Song, Sang-Keun;Choi, Yu-Na
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.107-123
    • /
    • 2019
  • The aerosol chemical components in $PM_{2.5}$ in several regions (Seoul, Busan, Daejeon, and Jeju Island) were investigated with regard to their concentration characteristics and optical properties. The optical properties of the various aerosol components (e.g., water-soluble, insoluble, Black Carbon (BC), and sea-salt) were estimated using hourly and daily aerosol sampling data from the study area via a modeling approach. Overall, the water-soluble component was predominant over all other components in terms of concentration and impact on optical properties (except for the absorption coefficient of BC). The annual mean concentration and Aerosol Optical Ddepth (AOD) of the water-soluble component were highest in Seoul (at the Gwangjin site) ($26{\mu}g/m^3$ and 0.29 in 2013, respectively). Further, despite relatively moderate BC concentrations, the annual mean absorption coefficient of BC ($21.7Mm^{-1}$) was highest in Busan (at the Yeonsan site) in 2013, due to the strong light absorbing ability of BC. In addition, high AODs for the water-soluble component were observed most frequently in spring and/or winter at most of the study sites, while low values were noted in summer and/or early fall. The diurnal variation in the AOD of each component in Seoul (at the Gwangjin site) was slightly high in the morning and low in the afternoon during the study period; however, such distinctions were not apparent in Jeju Island (at the Aweol site), except for a slightly high AOD of the water-soluble component in the morning (08:00 LST). The monthly and diurnal differences in the AOD values for each component could be attributed to the differences in their mass concentrations and Relative Humidities (RH). In a sensitivity test, the AODs estimated under RH conditions of 80 and 90% were factors of 1.2 and 1.7 higher, respectively, than the values estimated using the observed RH.

The Influence of Interpersonal Relationship and Communication Competence of Nursing Students who took Blended Learning on the Adjustment to College Life (블렌디드 러닝 수업을 받은 간호대학생의 대인관계와 의사소통능력이 대학생활적응에 미치는 영향)

  • Shin, Eun Sun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.392-403
    • /
    • 2022
  • The purpose of this study is to investigate the effect of interpersonal relationships and communication skills of nursing students who received blended learning classes on adjustment to college Life. The subjects of this study were 133 first and second year nursing students. The survey was conducted from november 22th to december 3th. 2021. The data was analyzed with the SPSS/WIN 26.0 program. Descriptive statistics and meen differences were analyzed using an t-test, ANOVA, Pearson's correlation coefficient, Multiple regression. The result adjustment to college life of interpersonal relationship, communication competence it was found that there was a significant positive correlation between. The factors of communication competence, interpersonal relationship, Nursing and admissions motivation were impact on the adjustment to college life level of nursing students. The explanatory power of this was 44.3%. In conclusion, a strategy for improving communication skills and smooth interpersonal relationships is needed so that nursing students who have received blended learning can adjustment to college life.