• Title/Summary/Keyword: impact behaviour

Search Result 242, Processing Time 0.019 seconds

Investigation of structural responses of breakwaters for green water based on fluid-structure interaction analysis

  • Lee, Chi-Seung;Heo, Haeng-Sung;Kim, Young-Nam;Kim, Myung-Hyun;Kim, Sang-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • In the present study, the structural response of breakwaters installed on container carriers against green water impact loads was numerically investigated on the basis of the fluid-structure interaction analysis. A series of numerical studies is carried out to induce breakwater collapse under such conditions, whereby a widely accepted fluid-structure interaction analysis technique is adopted to realistically consider the phenomenon of green water impact loads. In addition, the structural behaviour of these breakwaters under green water impact loads is investigated simultaneously throughout the transient analysis. A verification study of the numerical results is performed using data from actual collapse incidents of breakwaters on container carriers. On the basis of the results of a series of numerical analyses, the pressure distribution of green water was accurately predicted with respect to wave mass and velocity. It is expected that the proposed analytical methodology and predicted pressure distribution could be used as a practical guideline for the design of breakwaters on container carriers.

Influence of dynamic loading induced by free fall ball on high-performance concrete slabs with different steel fiber contents

  • Al kulabi, Ahmed K.;Al zahid, Ali A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.19-32
    • /
    • 2019
  • One way to provide safe buildings and to protect tenants from the terrorist attacks that have been increasing in the world is to study the behavior of buildings members after being exposed to dynamic loads. Buildings behaviour after being exposed to attacks inspired researchers all around the world to investigate the effect of impact loads on buildings members like slabs and to deeply study the properties of High Performance Concrete. HPC is well-known in its high performance and resistance to dynamic loads when it is compared with normal weight concrete. Therefore, the aim of this paper is finding out the impact of dynamic loads on RPC slabs' flexural capacity, serviceability loads, and failure type. For that purpose and to get answers for these questions, three concrete slabs with 0.5, 1, and 2% steel fiber contents were experimentally tested. The tests results showed that the content of steel fiber plays the key role in specifying the static capacity of concrete slabs after being dynamically loaded, and increasing the content of steel fiber led to improving the static loading capacity, decreased the cracks numbers and widths at the same time, and provided a safer environment for the buildings residents.

Energy absorption optimization on a sandwich panel with lattice core under the low-velocity impact

  • Keramat Malekzadeh Fard;Meysam Mahmoudi
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.525-538
    • /
    • 2023
  • This paper focuses on the energy absorption of lattice core sandwich structures of different configurations. The diamond lattice unit cell, which has been extensively investigated for energy absorption applications, is the starting point for this research. The energy absorption behaviour of sandwich structures with an expanded metal sheet as the core is investigated at low-velocity impact loading. Numerical simulations were carried out using ABAQUS/EXPLICIT and the results were thoroughly compared with the experimental results, which indicated desirable accuracy. A parametric analysis, using a Box-Behnken design (BBD), as a method for the design of experiments (DOE), was performed. The samples fabricated in three levels of parameters include 0.081, 0.145, and 0.562 mm2 Cell sizes, and 0, 45, and 90-degree cell orientation, which were investigated. It was observed from experimental data that the angle of cells orientation had the highest degree of influence on the specific energy absorption. The results showed that the angle of cells orientation has been the most influential parameter to increase the peak forces. The results from using the design expert software showed the optimal specific energy absorption and peak force to be 1786 J/kg and 26314.4 N, respectively. The obtained R2 values and normal probability plots indicated a good agreement between the experimental results and those predicted by the model.

Customer Equity and Brand Trust: A Cross-national Study of South Korea and China

  • Woojin KIM;Eunmi KIM
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.12 no.2
    • /
    • pp.9-18
    • /
    • 2024
  • Purpose: This study compares Korean and Chinese consumers on the impact of customer equity on trust. Although there have been many studies regarding the impact of customer equity, most of them are limited to the retail and banking industry and mostly compare East and West cultures. Therefore, this study compares Korea and China within East Asia in the hotel industry. Research design, data and methodology: Based on reviews in the literature, this study explores different effects of customer equity on brand trust between Korea and China. To confirm the hypotheses, the research collected survey data from 186 Korean and 155 Chinese respondents. After confirming reliability and validity of measures, this study conducted a multiple regression to test proposed hypotheses. Results: The results of the study showed that all of three customer equities influences on trust positively in the hotel industry. Regarding comparing Korea and China, brand equity has stronger impact on trust in Chinese customers than South Korean customers, on the other hand, value equity and relationship equity had a slightly stronger positive effect in South Korea than in China. Conclusions: This study found significant differences between Korean and Chinese customers in the hotel industry. These results show that even two countries in the same region of East Asia, South Korea and China, are different. Also, this finding suggests that hotel management level should consider differentiating their marketing strategies for Korean and Chinese customers.

Rheological properties of self consolidating concrete with various mineral admixtures

  • Bauchkar, Sunil D.;Chore, H.S.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • This paper reports an experimental study into the rheological behaviour of self consolidating concrete (SCC). The investigation aimed at quantifying the impact of the varying amounts of mineral admixtures on the rheology of SCC containing natural sand. Apart from the ordinary Portland cement (OPC), the cementitious materials such as fly ash (FA), ground granulated blast furnace slag (GGBS) and micro-silica (MS) in conjunction with the mineral admixtures were used in different percentages keeping the mix paste volume and flow of concrete constant at higher atmospheric tempterature ($30^{\circ}$ to $40^{\circ}C$). The rheological properties of SCC were investigated using an ICAR rheometer with a four-blade vane. The rheological properties of self-consolidating concrete (SCC) containing different mineral admixtures (MA) were investigated using an ICAR rheometer. The mineral admixtures were fly ash (FA), ground granulated blast furnace slag (GGBS), and micro silica (MS). The results obtained using traditional workability results are compared with those obtained using ICAR rheometer. The instrument ICAR (International Center for Aggregate Research) rheometer employed in the present study for evaluating the rhelogical behaviour of the SCC is found to detect systematic changes in workability, cementitious materials, successfully. It can be concluded that the rheology and the slump flow tests can be concurrently used for predicting the flow behaviours of SCC made with different cementitious materials.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study

  • Ghareh, Soheil;Kazemian, Sina;Shahin, Mohamed
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.337-348
    • /
    • 2020
  • Tropical organic soils having more than 65% of organic matters are named "peat". This soil type is extremely soft, unconsolidated, and possesses low shear strength and stiffness. Different conventional and industrial binders (e.g., lime or Portland cement) are used widely for stabilisation of organic soils. However, due to many factors affecting the behaviour of these soils (e.g., high moisture content, fewer mineral particles, and acidic media), the efficiency of the conventional binders is low and/or cost-intensive. This research investigates the impact of different constituents of cement-sodium silicate grout system on the compressibility behaviour of organic soil, including settlement and void ratio. A microstructure analysis is also carried out on treated organic soil using Scanning Electron Micrographs (SEM), Energy Dispersive X-ray spectrometer (EDX), and X-ray Diffraction (XRD). The results indicate that the settlement and void ratio of treated organic soils decrease gradually with the increase of cement and kaolinite contents, as well as sodium silicate until an optimum value of 2.5% of the wet soil weight. The microstructure analysis also demonstrates that with the increase of cement, kaolinite and sodium silicate, the void ratio and porosity of treated soil particles decrease, leading to an increase in the soil density by the hydration, pozzolanic, and polymerisation processes. This research contributes an extra useful knowledge to the stabilisation of organic soils and upgrading such problematic soils closer to the non-problematic soils for geotechnical applications such as deep mixing.

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • v.10 no.2
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

Finite element analysis of granular column for various encasement conditions subjected to shear load

  • Jaiswal, Akash;Kumar, Rakesh
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.645-655
    • /
    • 2022
  • Granular columns have recently found widespread use in underground construction. The behaviour of granular columns under vertical loads has been extensively studied, specifically in relation to vertical load capacity obtained by bulging of the column body, including the behaviour after encasement of material. Determining the shear strength of loose soils reinforced with granular columns has received less attention. After the observations of lateral deformation near the toe of the embankment, attempts have been made to strengthen the lateral strength of granular columns. The purpose of this research is to look into the effects of different encasement conditions on the lateral load capacity of granular columns. This was accomplished by three-dimensional finite element analysis with FEM software. Various normal pressures and two different encasement configurations, namely single layer encasement and double layer encasement, with differing tensile strengths, were used in this study to determine their effect on lateral resistance. The failure envelope for a single column planted in loose sand was used to analyse the findings for three different granular column diameters, as well as the impact of different encasement conditions. According to the findings, the inclusion of a Granular Column enhanced the shear strength and overall stiffness of the loose sand bed, and the encasement of the Granular Column helped in deriving higher lateral resistance.

Dynamic analysis of a rotating tapered composite Timoshenko shaft

  • Zahi Rachid;Sahli Abderahmane;Moulgada Abdelmadjid;Ziane Noureddine;Refassi Kaddour
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.429-441
    • /
    • 2023
  • This research presents an advanced finite element formulation for analyzing the vibratory behaviour of tapered composite shaft rotors, taking into account the impact of the draft angle on the stiffness of the composite shaft laminate. The vibration response of the shaft rotating around its axis is studied using both the finite element hierarchical method and the classical finite element formulation, based on the theory of transverse shear deformation, rotary inertia, gyroscopic effect, and coupling effect due to the stratification of the composite layers of the shaft. The study also includes the development of a program to calculate the Eigen frequencies and critical speeds of the system, and the obtained results are compared with those available in the literature. This research provides valuable insights into the vibratory behaviour of tapered composite shaft rotors and can be useful for designing and optimizing such structures in various industrial applications.