• Title/Summary/Keyword: impact analysis

Search Result 14,665, Processing Time 0.041 seconds

A Study on Composite Materials Frame of Electric Vehicles using Impact Analysis (충돌해석을 이용한 전기자동차 복합소재 프레임 설계에 관한 연구)

  • Ahn, Tae-Kyeong;Lee, Young-Jin;Lee, Sang-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.75-80
    • /
    • 2020
  • In this study, we designed car frames for collision analysis using carbon fiber reinforced polymer (CFRP) as the lighter composite material. The impact conditions were 100 percent frontal impact, 40 percent frontal impact, and 90 degrees side impact. The impact analysis measured the maximum stress at velocities of 20km/h and 40km/h for each condition and evaluated the vulnerable points in the car frame. Additional supports have been designed both to improve the weak points in existing vehicle frames, and to be taken into account when new parts are assembled. Our impact analysis compared the results of maximum stress on the car frame with and without the support.

Calculation of the Impact Force Applied on the Tooth of Upper and Lower Jaw-Bones in Masticating for the Design of a Dental Implant System. (MDO기법에 의한 임프란트설계에서 요구되는 저작시 상.하악골치아사이의 충격력 계산)

  • 권영주
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • MDO(Multidisciplinary Design Optimization) methodology is a new technology to solve a complicate design problem with a large number of design variables and constraints. The design of a dental implant system is a typical complicate problem, and so it requires the MDO methodology. Actually, several analyses such as rigid body dynamic analysis and structural stress analysis etc. should be carried out in the MDO methodology application to the design of a dental implant system. In this paper, as a first step of MDO methodology application to the design of a dental implant system, the impact force which is applied on the tooth in masticating is calculated through the rigid body dynamic analysis of upper and lower jaw-bones. This analysis is done using ADAMS. The impact force calculated through the rigid body dynamic analysis can be used for the structural stress analysis of a dental implant system which is needed for the design of a dental implant system. In addition, the rigid body dynamic analysis results also show that the impact time decreases as the impact force increases, the largest impact force occurs on the front tooth, and the impact force is almost normal to the tooth surface with a slight tangential force.

Change Impact Analysis in Engineering Design Process (공학 설계 프로세스에서 설계 변경 영향 해석)

  • 정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.355-360
    • /
    • 2000
  • There are many changed while a design is completed. Therefore, if the impact of the design changes is estimated, it may result in the improvement of design efficiency. But, the design changes have various types and affect other parts of the design system. Hence, it is difficult to deal with design changes directly. The purpose of this research is to develop a systematic change propagation tracing algorithm and a method of change impact analysis and then, to implement a change impact analysis system. Process based design is set up for the field of this research. Also the design, composed of design parameters and constraints, is set up for the subject of the research. Change propagation tracing algorithm traces change propagation based on the following concept : If the design parameters are changed, other parameters within the constrains including them may be changed. Using the result of change propagation tracing algorithm, changeable parameters, constraints and tasks can be found. The method of change impact analysis, to calculate change impact value from this changeable tasks, is developed. Change propagation tracing algorithm and the method of change impact analysis are implemented into change impact analysis system and it is applied to the redesign of 2 stage gear drives. It can support different kinds of design activities systematically. especially, at the redesign step, where many design change alternatives exist, change impact value of each alternative exist, change impact value of each alternative is calculated and design change is performed toward direction to minimize the impact of design change. Consequently, it is expected to improve the efficiency of the whole design.

  • PDF

Impact Analysis of a plate structures Employing Hertzian Contact Theory (Hertz 접촉 이론을 이용한 평판 구조물의 충돌 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.383-388
    • /
    • 2008
  • A modeling method for the impact analysis of plate structures employing Hertzian contact theory is presented in this paper. Since local deformation as well as bending deflection of the plate occurs due to the collision, it has to be considered for the impact analysis. When the coefficient of restitution is employed for the impact analysis, the local deformation is not considered. For more accurate and reliable impact analysis, however, the local deformation should be considered. The effects of the location of collision and the collision mass on the impact duration time and the contact force magnitude are investigated through numerical studies employing Hertzian contact theory.

  • PDF

Development of Extra-large Hydraulic Breaker (초대형 유압브레이커 개발)

  • Ahn, Kyubok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3081-3086
    • /
    • 2015
  • Development of a extra-large hydraulic breaker, which could be used for a 100 ton-class excavator were carried out Hot-firing tests were carried out. Before designing a hydraulic breaker, the analysis method to predict the performance such as impact energy and impact rate were studied. Based on the analysis result, the design and manufacture of a extra-large hydraulic breaker were performed, and the breaker were confirmed to operate successfully. The data of impact energy and impact rate were measured during the operation of the breaker, and were compared with the analysis result. The analysis result of impact rate anticipated well the test data, but that of impact energy showed a large difference with the test data. The extra-large hydraulic breaker were successfully developed and the analysis method of impact energy will be updated taking into account friction, hydraulic circuit, etc.

IMPACT ANALYSIS OF A WATER STORAGE TANK

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Sang-Jin
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.681-688
    • /
    • 2006
  • This study investigates the dynamic response characteristics of a structure impacted by a high speed projectile. The impact of a 300 kg projectile on a water storage tank is simulated by the general purpose computer codes ANSYS and LS-DYNA. Several methods to simulate the impact are considered and their results are compared. Based upon this, an alternative impact analysis method that is equivalent to an explicit dynamic analysis is proposed. The effect of fluid on the responses of the tank is also addressed.

Development of LCD-Oriented Impact Analysis System (LCD 모듈전용 충격해석시스템 개발)

  • Choi, Seong-Sik;Lee, Jeoung-Gwen
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1419-1424
    • /
    • 2003
  • Impact analysis of TFT-LCD module is very complicated because the structure is assisted with thin, small and non-uniform geometry. Especially, finite element modeling is more difficult and need time-consuming efforts. In this study, we developed LCD Impact Analysis System (LIAS) for the purpose of reducing the analysis time without accuracy reduction. This system contains pre-meshing data, material database, shock condition, auto-reporting etc. PATRAN and DYNA3D is used for meshing and solving. Previously, we performed impact test and reviewed the accuracy of analysis results. Simply we can control design parameters, the procedure such as meshing, running and reporting which are partially auto-prepared. By adopting proposed system, it is expected to achieve efficient impact analysis of LCD module.

  • PDF

A Study On the Analysis Of Impact Strain for Hydraulic Breaker Chisel (유압식 착암기 치즐의 타격 변형량 해석에 관한 연구)

  • Park, J.W.;Lee, K.W.;Kim, H.E.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.21-27
    • /
    • 2007
  • A hydraulic breaker for construction machinery generally used for the destroying and disassembling of buildings, crashing road pavement, breaking rocks at quarry and so on. So the measurement of the impact energy of a hydraulic breaker is very important thing to prove its capability to manufacturers and customers. Therefore the prediction of impact energy in design process is very helpful to the most of breaker manufacturers. In this study, we carried on modeling and simulation of a hydraulic breaker to predict impact energy via commercial CAE software. The modeling and simulation of a hydraulic breaker was achieved with two parts. One is a hydraulic circuit analysis part via AMESim and the other is impact strain analysis part via ANSYS.

  • PDF

DROP IMPACT ANALYSIS OF PLATE-TYPE FUEL ASSEMBLY IN RESEARCH REACTOR

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Lee, Byung-Ho;Oh, Jae-Yong;Tahk, Young-Wook
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.529-540
    • /
    • 2014
  • In this research, a drop impact analysis of a fuel assembly in a research reactor is carried out to determine whether the fuel plate integrity is maintained in a drop accident. A fuel assembly drop accident is classified based on where the accident occurs, i.e., inside or outside the reactor, since each occasion results in a different impact load on the fuel assembly. An analysis procedure suitable for each drop situation is systematically established. For an accident occurring outside the reactor, the direct impact of a fuel assembly on the pool bottom is analyzed using implicit and explicit approaches. The effects of the key parameters, such as the impact velocity and structural damping ratios, are also studied. For an accident occurring inside the reactor, the falling fuel assembly may first hit the fixing bar at the upper part of the standing fuel assembly. To confirm the fuel plate integrity, a fracture of the fixing bar should be investigated, since the fixing bar plays a role in protecting the fuel plate from the external impact force. Through such an analysis, the suitability of an impact analysis procedure associated with the drop situation in the research reactor is shown.

An Analysis of Ice Impact Force Characteristics for the Arctic Structure Shape (극지 구조물 형상에 대한 빙충격 하중 특성 분석)

  • Jeong, Seong-Yeob;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.469-477
    • /
    • 2012
  • This paper describes the characteristic analysis of ice impact force for the Arctic structure shape. In the present study an energy method has been used to predict the impact force during the ice-structure collision. This study also employs two concepts for reference contact area and normalized stress in analysis procedure. The influences of factors, such as impact velocity, full penetration depth, structure shape and ice floe size, are investigated. Full penetration occurs, particularly at lower impact velocity when ice thickness increase. But "typical size" ice floe does not expected ever to achieve full penetration during the impact procedure. The structure shape is the dominant factor in ice impact force characteristic. The results for various ice-structure collision scenarios are analyzed.