• Title/Summary/Keyword: immune-related gene

Search Result 237, Processing Time 0.032 seconds

Effects of Cordyceps Militaris Extract on Tumor Immunity

  • Ha, Jae-Won;Yoo, Hwa-Seung;Shin, Jang-Woo;Cho, Jung-Hyo;Lee, Nan-Heon;Yoon, Dam-Hee;Lee, Yeon-Weol;Son, Chang-Gue;Cho, Chong-Kwan
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.12-29
    • /
    • 2006
  • Background and Aims : Even though various strategies for cancer treatment have advanced with the remarkable development of genomic information and technology, it is far from giving relief to cancer patients. Recently there is accumulating evidence that the immune system is closely connected to anti-tumor defense mechanisms in a multistage process. This includes tumorigenesis, invasion, growth and metastasis. Cordyceps Militaris, a well-known oriental herbal medicine, is a parasitic fungus that has been used as an immune enhancing agent for a long period of time. However, little is known about the cancer-related immunomodulatory effects and anti-tumor activities. In the present study, we aimed to investigate the effects of Cordyceps Militaris extract (CME) on immune modulating and anti-tumor activity. Materials and Methods : To elucidate the effects of CME on macrophage and natural killer (NK) cell activity, we analyzed nitric oxide (NO) production, NK cytotoxicity and gene expression of cytokines related with macrophages and NK cell activity. Results and Conclusions : CME activated and promoted macrophage production of NO. It also enhanced gene expression of IL-1 and iNOS in RAW 264.7 cells. CME promoted cytotoxicity of NK cells against YAC-1 cells and enhanced NK cell related gene expression such as IL-1, IL-2, IL-12, iNOS, IFN-${\gamma}$ and TNF-${\alpha}$ in mice splenocytes. It also Promoted protein expression of IL-10, IL-12, IFN-${\gamma}$ and TNF-${\alpha}$ in mice splenocytes and inhibited lung tumor metastasis induced by CT-26 cell line compared with the control group. From these results, it could be concluded that CME is an effective herbal drug for modulating the immune system and anti-cancer treatment by promoting macrophage and NK cell activity.

  • PDF

Analysis of Manifestation of CC and CXC Chemokine Genes in Olive Flounders (Paralichthys olivaceus) Artificially Infected with VHSV during the Early Developmental Stage

  • Kim, Kyung-Hee;Kim, Woo-Jin;Park, Choul-Ji;Park, Jong-Won;Noh, Gyeong Eon;Lee, Seunghyung;Lee, Young Mee;Kim, Hyun Chul
    • Development and Reproduction
    • /
    • v.22 no.4
    • /
    • pp.341-350
    • /
    • 2018
  • Chemokines is a small protein that plays a major role in inflammatory reactions and viral infections as a chemotactic factor of cytokines involved in innate immunity. Most of the chemokines belong to the chemokine groups CC and CXC. To investigate the immune system of the olive flounder (Paralichthys olivaceus), an expression pattern specifically induced in the early developmental stages of analysis is examined using qRT-PCR. We also examined tissue-specific expression of both CC and CXC chemokine in healthy olive flounder samples. CC and CXC chemokine shows increased expression after immune-related organs are formed compared to expression during early development. CC chemokine was more highly expressed in the fin, but CXC chemokine showed higher expression in the gills, spleen, intestines, and stomach. Spatial and temporal expression analysis of CC and CXC chemokine were performed following viral hemorrhagic septicemia virus (VHSV) infection. CC chemokine showed high expression in the gills, which are respiratory organs, whereas CXC chemokine was more highly expressed in the kidneys, an immune-related organ. These results suggest that CC and CXC chemokine play an important role in the immune response of the olive flounder, and may be used as basic data for the immunological activity and gene analysis of it as well as other fish.

Association of HIV infection with MICA(MHC class I chain-related A) gene alleles (HIV감염과 MICA (MHC class I chain-related A) 대립 유전자의 연관성)

  • Kang, Moon-Won;Wie, Seong-Heon;Kim, Yang-Ree;Lee, Joo-Shil;Pyo, Chul-Woo;Han, Hoon;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.135-142
    • /
    • 2001
  • Background: A large number of diseases occur in association with specific HLA-B or-C alleles. Recently a new gene, termed maj or histocompatibility complex class I chain-related gene A (MICA), has been identified in close proximity to HLA-B. The function of this gene is still unknown. However, it is structurally similar to HLA class I genes. MICA gene is polymorphic and is potentially associated with several diseases. Methods: To evaluate the association of MICA gene in Korean patients with human immunodeficiency virus 1 (HIV-1) infections, Polymerase chain reaction-Sequence specific primer (PCR-SSP) was done for MICA alleles in the extracellular exons, and a microsatellite analysis for GCT repeat polymorphisms in the TM exon was also completed. Results: In 199 Korean healthy controls, 7 alleles were observed and the frequencies for each allele were MICA008 (44.7%), MICA0 10 (34.2%), MICA002 (31.7%), MICA004 (23.6%), MICA0 12 (2 1.6%), MICA009 (19.6%), and MICA007 (6.5%). When 65 HIV seropositive patients were analyzed, MICA007 allele frequency was significantly higher than in controls (15.4% vs 6.5 %, RR=2.6, p<0.04). In contrast, the frequencies of other MICA alleles and microsatellite alleles in the transmembrane region of MICA gene were not significantly different between HIV seropositive patients and controls. The tight linkage between MICA alleles in the extracellular exons and GCT repeat polymorphisms in the TM exon was observed as follows; MICA002/A9, MICA004/A6, MICA007/A4, MICA008/A5.1, MICA0 10/A5, and MICA0 12/A4 in both groups. No significant difference between patients and controls was observed in the haplotype frequencies of MICA alleles in the extracellular exons and GCT repeat polymorphisms in the TM exon. Conclusion: The data suggest that immune functions related with MICA gene may affect a HIV infections.

  • PDF

Effects of Rearing Density Stress on Malformation and Stress and Immune Related Gene Expression of Juvenile Olive Flounder Paralichthys olivaceus (자어기 넙치(Paralichthys olivaceus)의 사육 밀도에 따른 기형 발생과 스트레스 및 면역 유전자 발현 분석)

  • Sanghyun Lee;Jong-Won Park;Minhwan Jeong;Hyo Sun Jung;Julan Kim;Woo-Jin Kim;Jeong-Ho Lee;Dain Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.380-387
    • /
    • 2023
  • Stocking density is associated with Paralichthys olivaceus growth; thus, fish should be rapidly reared at high densities for commercial reasons. Studies have reported that high stocking density retards growth; however, few have investigated the malformations caused by stocking density stress. This study compared the growth and malformation rates of P. olivaceus at different densities and stress- and immune-related gene expression between malformed and normal fish. Forty days post-hatching, fish (total length, 1.49±0.02 cm) were reared at 800 (low density; LD), 1500 (medium density; MD), and 4000 (high density; HD) fish/m2, and the growth rate was measured weekly. On day 30, RNA was extracted from the kidneys, and the expression of stress-, immune-, and malformation-related genes was analyzed using qRT-PCR. The malformation rate in the HD groups was approximately three times higher (62%) than that in the LD and MD groups (approximately 20%), and growth was lower regarding length and weight. The stress-related (HSP70 and GPX) and immune-related (PIR and IgM) genes showed higher mRNA expression in the HD group and malformed fish than in the LD group and normal fish. However, TLR3 showed the opposite results. In summary, high stocking density suppressed growth and increased malformation risk in P. olivaceus.

Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis

  • Parisima Ghaffarian Zavarzadeh;Zahra Abedi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.6.1-6.8
    • /
    • 2023
  • Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.

Effects of Allicin on Cytokine Production Genes of Human Peripheral Blood Mononuclear Cells (마늘의 Allicin이 사람 단핵세포의 사이토카인 생산 유전자의 발현에 미치는 영향)

  • 박란숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.3
    • /
    • pp.191-196
    • /
    • 2002
  • The effect of allicin, the major component of garlic (Allium sativum), on the gene expression profiles of peripheral blood mononuclear cells from healthy donors was analyzed. DNA microarray which can detect expression signal of 862 genes revealed that allicin induced the expression of cytokine, chemokine, and immune-related genes in peripheral blood mononuclear cells. In contrast, allicin repressed the expression of adaptive immune-related genes, which are expressed in T helper 1 Iymphocytes. Simultaneous inhibitory and stimulatory effects of allicin were found on inflammatory cells. It is likely that allicin down-regulated the expression of specific genes that were previously up-regulated in resting cells, suggesting a new mechanism by which they exert positive and negative effect. Considering the broad and renewed interest in allicin, the profiles we describe here will be useful in designing more specific and efficient treatment strategies.

Immune Response to Koi Herpesvirus (KHV) of Koi and Koi × Red Common Carp (Cyprinus carpio)

  • Hwang, Ju-ae;Kim, Jung Eun;Kim, Hyeong-su;Lee, Jeong-Ho
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.361-370
    • /
    • 2017
  • Koi herpesvirus (KHV), also known as Cyprinid herpes virus 3 (Cyprinid 3) is lethal disease in common carp and koi (Cyprinus carpio). Two different groups (KK and RK) were infected KHV by intraperitoneal injection. Fish for gene expression analysis were sampled at 0 h, 12 h, 24 h, 48 h and 72 h post infection (p.i). The results showed that two immune related gene, Interferons (INFs) ${\alpha}{\beta}$ and Interleukin (IL)-12 p35 induced a high response in RK. The IL-12 p35 cytokine and Toll-like receptor (TLR) 9 were significantly high expressed on 48 h post infection (p.i) in RK as compared to the KK. The histopatological examination reveals focal necrosis in liver and infiltrate of lymphocytes in spleen of KK as compared to the RK. In immunohistochemistry analysis, the KHV protein high expressed in the infected kidney cell and slenocyte of KK. Therefore, the expression of IL-12 p35, IFN ${\alpha}{\beta}$ and TLR 9 may provide a potentially genes related with KHV resistance in Koi and red common carp ${\times}$ koi.

Construction of a Novel Mitochondria-Associated Gene Model for Assessing ESCC Immune Microenvironment and Predicting Survival

  • Xiu Wang;Zhenhu Zhang;Yamin Shi;Wenjuan Zhang;Chongyi Su;Dong Wang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1164-1177
    • /
    • 2024
  • Esophageal squamous cell carcinoma (ESCC) is among the most common malignant tumors of the digestive tract, with the sixth highest fatality rate worldwide. The ESCC-related dataset, GSE20347, was downloaded from the Gene Expression Omnibus (GEO) database, and weighted gene co-expression network analysis was performed to identify genes that are highly correlated with ESCC. A total of 91 transcriptome expression profiles and their corresponding clinical information were obtained from The Cancer Genome Atlas database. A mitochondria-associated risk (MAR) model was constructed using the least absolute shrinkage and selection operator Cox regression analysis and validated using GSE161533. The tumor microenvironment and drug sensitivity were explored using the MAR model. Finally, in vitro experiments were performed to analyze the effects of hub genes on the proliferation and invasion abilities of ESCC cells. To confirm the predictive ability of the MAR model, we constructed a prognostic model and assessed its predictive accuracy. The MAR model revealed substantial differences in immune infiltration and tumor microenvironment characteristics between high- and low-risk populations and a substantial correlation between the risk scores and some common immunological checkpoints. AZD1332 and AZD7762 were more effective for patients in the low-risk group, whereas Entinostat, Nilotinib, Ruxolutinib, and Wnt.c59 were more effective for patients in the high-risk group. Knockdown of TYMS significantly inhibited the proliferation and invasive ability of ESCC cells in vitro. Overall, our MAR model provides stable and reliable results and may be used as a prognostic biomarker for personalized treatment of patients with ESCC.

Apoptosis-Induced Gene Profiles of a Myeloma Cell P3-X63-Ag8.653

  • Bahng, Hye-Seung;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.6 no.3
    • /
    • pp.128-137
    • /
    • 2006
  • Background: Apoptosis is a physiologic phenomenon involved in development, elimination of damaged cells, and maintenance of cell homeostasis. Deregulation of apoptosis may cause diseases, such as cancers, immune diseases, and neurodegenerative disorders. The mouse myeloma cell P3-X63-Ag8.653 (v653) is an HGPRT deficient $(HGPRT^-)$ mutant strain. High dependency on de novo transcription and translation of aminopterin induced apoptosis of this cell seems to be an ideal experimental system for searching apoptosis-induced genes. Methods & Results: For searching apoptosis-related genes we carried out GE-array (dot blot), Affymetrix GeneChip analysis, Northern analysis and differential display-PCR techniques. The chip data were analyzed with three different programs. 66 genes were selected through Affymetrix GeneChip analyses. All genes selected were classified into 8 groups according to their known functions. They were Genes of 1) Cell growth/maintenance/death/enzyme, 2) Cell cycle, 3) Chaperone, 4) Cancer/disease-related genes, 5) Mitochondria, 6) Membrane protein/signal transduction, 7) Nuclear protein/nucleic acid binding/transcription binding and 8) Translation factor. Among these groups number of genes were the largest in the genes of cell growth/maintenance/death/enzyme. Expression signals of most of all groups were peaked at 3 hour of apoptosis except genes of Nuclear protein/nucleic acid binding/transcription factor which showed maximum signal at 1 hour. Conclusion: This study showed induction of wide range of proapoptotic factors which accelerate cell death at various stage of cell death. In addition apoptosis studied in this research can be classified as a type 2 which involves cytochrome c and caspase 9 especially in early stages of death. But It also has progressed to type 1 in late stage of the death process.

cDNA microarray analysis of viral hemorrhagic septicemia infected olive flounder, Paralichthys olivaceus: immune gene expression at different water temperature (바이러스성 출혈성 패혈증에 감염된 넙치의 cDNA microarray 분석 : 수온에 따른 면역 유전자 발현의 차이)

  • Kim, Jin-Ung;Jung, Sung-Ju
    • Journal of fish pathology
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The olive flounder, Paralichthys olivaceus is susceptible to viral hemorrhagic septicaemia virus (VHSV) at $15^{\circ}C$ but no mortality at $20^{\circ}C$ even though the virus can grow well in vitro at $20^{\circ}C$. Thus, we designed an experiment to know immune response of olive flounder against VHSV when the host reared at $15^{\circ}C$ or $20^{\circ}C$. cDNA microarray analysis was performed to compare the gene expression patterns of the kidney cells between the host reared at $15^{\circ}C$ or $20^{\circ}C$. The expression of MHC class I, IL-8, myeloperoxidae and endonuclease G-like having function for the antigen presentation and chemokine-factor were up-regulted both the $15^{\circ}C$ and $20^{\circ}C$ during VHSV infection. MHC class II gene existing on antigen-presenting cells and B cell lymphocytes, immunoglobulin (Ig) genes and phagocytosis related genes were down-regulated at $15^{\circ}C$ but highly expressed at $20^{\circ}C$. It can be thought that innate immune related antigen presentation by MHC class I and phagocytosis reaction against VHSV are efficiently occur both the temperature but macrophage or B cell related antigen presentation via MHC class II fails to induce downstream immune reactions (adaptive immunity) to make antibody, and it can be one of the reason that causes high mortality only at $15^{\circ}C$.