• 제목/요약/키워드: immune regulator

검색결과 92건 처리시간 0.028초

저선량 방사선에 의한 Ikaros-Autotaxin 상호작용 조절 효과 (The Regulatory Effects of Low-Dose Ionizing Radiation on Ikaros-Autotaxin Interaction)

  • 강한아;조성준;김성진;남선영;양광희
    • 방사선산업학회지
    • /
    • 제10권1호
    • /
    • pp.7-12
    • /
    • 2016
  • Ikaros, a transcription factor containing zinc-finger motif, has known as a critical regulator of hematopoiesis in immune system. Ikaros protein modulates the transcription of target genes via binding to the regulatory elements of the genes promoters. However the regulatory function of Ikaros in other organelle except nuclear remains to be determined. This study explored radiation-induced modulatory function of Ikaros in cytoplasm. The results showed that Ikaros protein lost its DNA binding ability after LDIR (low-dose ionizing radiation) exposure. Cell fractionation and Western blot analysis showed that Ikaros protein was translocated into cytoplasm from nuclear by LDIR. This was confirmed by immunofluorescence assay. We identified Autotaxin as a novel protein which potentially interacts with Ikaros through in vitro protein-binding screening. Co-immunoprecipitation assay revealed that Ikaros and Autotaxin are able to bind each other. Autotaxin is a crucial enzyme generating lysophosphatidic acid (LPA), a phospholipid mediator, which has potential regulatory effects on immune cell growth and motility. Our results indicate that LDIR potentially regulates immune system via protein-protein interaction of Ikaros and Autotaxin.

Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies

  • Jung-Hyun Park;Seung-Woo Lee;Donghoon Choi;Changhyung Lee;Young Chul Sung
    • IMMUNE NETWORK
    • /
    • 제24권1호
    • /
    • pp.9.1-9.21
    • /
    • 2024
  • The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.

Impact of mesenchymal stem cell senescence on inflammaging

  • Lee, Byung-Chul;Yu, Kyung-Rok
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.65-73
    • /
    • 2020
  • Life expectancy has dramatically increased around the world over the last few decades, and staying healthier longer, without chronic disease, has become an important issue. Although understanding aging is a grand challenge, our understanding of the mechanisms underlying the degeneration of cell and tissue functions with age and its contribution to chronic disease has greatly advanced during the past decade. As our immune system alters with aging, abnormal activation of immune cells leads to imbalance of innate and adaptive immunity and develops a persistent and mild systemic inflammation, inflammaging. With their unique therapeutic properties, such as immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have been considered to be a promising source for treating autoimmune disease or as anti-aging therapy. Although direct evidence of the role of MSCs in inflammaging has not been thoroughly studied, features reported in senescent MSCs or the aging process of MSCs are associated with inflammaging; MSC niche-driven skewing of hematopoiesis toward the myeloid lineage or oncogenesis, production of pro-inflammatory cytokines, and weakening their modulative property on macrophage polarization, which plays a central role on inflammaging development. This review explores the role of senescent MSCs as an important regulator for onset and progression of inflammaging and as an effective target for anti-aging strategies.

Anti-inflammatory Effect of 9-cis Retinoic Acid on the Human Mast Cell Line, HMC-1

  • Lee, Ji-Sook;Kim, In-Sik
    • 대한의생명과학회지
    • /
    • 제13권2호
    • /
    • pp.149-152
    • /
    • 2007
  • Mast cells play important roles in immune-related diseases, in particular, allergic diseases. Although 9-cis retinoic acid (9CRA) has been known as an immune regulator, its function in mast cells is not characterized well. In a previous paper, we demonstrated that 9CRA differentially decreases both CCR2 expression and the MCP-1-induced chemotactic activity of the human mast cell line, HMC-1 cells. In the present study, we examined the effects of 9CRA on the migration and expressions of inflammatory cytokines in HMC-1 cells. It was found that 9CRA significantly inhibited the migration of HMC-1 cells in response to stem cell factor (P<0.01), and it had no effect on the mRNA and protein expression of c-kit, a receptor binding to SCF. We further investigated the alternation of inflammatory cytokine expression and identified that 9CRA blocked the mRNA and protein expressions of Th2 cytokines such as interleukin (IL)-4 and IL-5. Taken together, our results demonstrate that 9CRA blocks SCF-induced cell movement and the protein secretion of IL-4 and IL-5, and this indicates that 9CRA may have anti-inflammatory effects on mast cells.

  • PDF

The role of necroptosis in the treatment of diseases

  • Cho, Young Sik
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.219-224
    • /
    • 2018
  • Necroptosis is an emerging form of programmed cell death occurring via active and well-regulated necrosis, distinct from apoptosis morphologically, and biochemically. Necroptosis is mainly unmasked when apoptosis is compromised in response to tumor necrosis factor alpha. Unlike apoptotic cells, which are cleared by macrophages or neighboring cells, necrotic cells release danger signals, triggering inflammation, and exacerbating tissue damage. Evidence increasingly suggests that programmed necrosis is not only associated with pathophysiology of disease, but also induces innate immune response to viral infection. Therefore, necroptotic cell death plays both physiological and pathological roles. Physiologically, necroptosis induce an innate immune response as well as premature assembly of viral particles in cells infected with virus that abrogates host apoptotic machinery. On the other hand, necroptosis per se is detrimental, causing various diseases such as sepsis, neurodegenerative diseases and ischemic reperfusion injury. This review discusses the signaling pathways leading to necroptosis, associated necroptotic proteins with target-specific inhibitors and diseases involved. Several studies currently focus on protective approaches to inhibiting necroptotic cell death. In cancer biology, however, anticancer drug resistance severely hampers the efficacy of chemotherapy based on apoptosis. Pharmacological switch of cell death finds therapeutic application in drug- resistant cancers. Therefore, the possible clinical role of necroptosis in cancer control will be discussed in brief.

Role of HIV Vpr as a Regulator of Apoptosis and an Effector on Bystander Cells

  • Moon, Ho Suck;Yang, Joo-Sung
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.7-20
    • /
    • 2006
  • The major event in human immunodeficiency virus type 1 (HIV-1) infection is the death of many cells related to host immune response. The demise of these cells is normally explained by cell suicide mechanism, apoptosis. Interestingly, the decrease in the number of immune cells, such as non-CD4+ cells as well as CD4+ T cells, in HIV infection usually occurs in uninfected bystander cells, not in directly infected cells. It has, therefore, been suggested that several soluble factors, including viral protein R (Vpr), are released from the infected cells and induce the death of bystander cells. Some studies show that Vpr interacts directly with adenine nucleotide translocator (ANT) to induce mitochondrial membrane permeabilization (MMP). The MMP results in release of some apoptogenic factors such as cytochrome-c (cyt-c) and apoptosis-inducing factor (AIF). Vpr also has indirect effect on mitochondria through enhancing the level of caspase-9 transcription and suppressing nuclear factor-kappa B (NF-${\kappa}B$). The involvement of p53 in Vpr-induced apoptosis remains to be studied. On the other hand, low level of Vpr expression has anti-apoptotic effect, whereas it's high level of expression induces apoptosis. Extracellular Vpr also exhibits cytotoxicity to uninfected bystander cells through apoptotic or necrotic mechanism. The facts that Vpr has cytotoxic effect on both infected cells and bystander cells, and that it exhibits both proand anti-apoptotic activity may explain its role in viral survival and disease progression.

Emerging role of Hippo pathway in the regulation of hematopoiesis

  • Inyoung Kim;Taeho Park;Ji-Yoon Noh;Wantae Kim
    • BMB Reports
    • /
    • 제56권8호
    • /
    • pp.417-425
    • /
    • 2023
  • In various organisms, the Hippo signaling pathway has been identified as a master regulator of organ size determination and tissue homeostasis. The Hippo signaling coordinates embryonic development, tissue regeneration and differentiation, through regulating cell proliferation and survival. The YAP and TAZ (YAP/TAZ) act as core transducers of the Hippo pathway, and they are tightly and exquisitely regulated in response to various intrinsic and extrinsic stimuli. Abnormal regulation or genetic variation of the Hippo pathway causes a wide range of human diseases, including cancer. Recent studies have revealed that Hippo signaling plays a pivotal role in the immune system and cancer immunity. Due to pathophysiological importance, the emerging role of Hippo signaling in blood cell differentiation, known as hematopoiesis, is receiving much attention. A number of elegant studies using a genetically engineered mouse (GEM) model have shed light on the mechanistic and physiological insights into the Hippo pathway in the regulation of hematopoiesis. Here, we briefly review the function of Hippo signaling in the regulation of hematopoiesis and immune cell differentiation.

CD72 is a Negative Regulator of B Cell Responses to Nuclear Lupus Self-antigens and Development of Systemic Lupus Erythematosus

  • Takeshi Tsubata
    • IMMUNE NETWORK
    • /
    • 제19권1호
    • /
    • pp.1.1-1.13
    • /
    • 2019
  • Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease characterized by production of autoantibodies to various nuclear antigens and overexpression of genes regulated by IFN-I called IFN signature. Genetic studies on SLE patients and mutational analyses of mouse models demonstrate crucial roles of nucleic acid (NA) sensors in development of SLE. Although NA sensors are involved in induction of antimicrobial immune responses by recognizing microbial NAs, recognition of self NAs by NA sensors induces production of autoantibodies to NAs in B cells and production of IFN-I in plasmacytoid dendritic cells. Among various NA sensors, the endosomal RNA sensor TLR7 plays an essential role in development of SLE at least in mouse models. CD72 is an inhibitory B cell co-receptor containing an immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic region and a C-type lectin like-domain (CTLD) in the extracellular region. CD72 is known to regulate development of SLE because CD72 polymorphisms associate with SLE in both human and mice and CD72-/- mice develop relatively severe lupus-like disease. CD72 specifically recognizes the RNA-containing endogenous TLR7 ligand Sm/RNP by its extracellular CTLD, and inhibits B cell responses to Sm/RNP by ITIM-mediated signal inhibition. These findings indicate that CD72 inhibits development of SLE by suppressing TLR7-dependent B cell response to self NAs. CD72 is thus involved in discrimination of self-NAs from microbial NAs by specifically suppressing autoimmune responses to self-NAs.

RAW 264.7 대식세포에서 환원형 glutathione인 luthione의 면역 증강 활성 평가 (Evaluation of Immune Enhancing Activity of Luthione, a Reduced Glutathione, in RAW 264.7 Macrophages)

  • 지선영;권다혜;황혜진;최영현
    • 생명과학회지
    • /
    • 제33권5호
    • /
    • pp.397-405
    • /
    • 2023
  • 항산화제로서 산화적 손상의 방지에 중요한 역할을 하는 것으로 알려진 glutathione (GSH)의 면역 조절에 대한 연구는 현재까지 제대로 이루어지지 않았다. 본 연구에서 우리는 환원형 GSH인 luthione®이 RAW 264.7 세포에서 면역 강화 효과가 있는지를 조사하였다. 유세포 분석 및 면역 형광 실험의 결과에 의하면, luthione은 대조군 세포에 비해 대식세포의 대표적인 기능인 식세포 활성을 luthione 처리 농도 의적으로 증가시키는 것으로 나타났다. 또한, cytokine array의 결과에 의하면, IL-5, IL-1β와 IL-27의 발현이 luthione이 처리된 세포에서 유의하게 증가하였다. 아울러 luthione에 의한 TNF-α 및 IL-1β의 생성 증가는 그들의 단백질 발현 증가를 통해 이루어졌으며, NO 및 PGE2와 같은 면역 매개체 유리의 증가는 iNOS 및 COX-2의 발현 증가와 관련이 있었으며, 이는 M1 대식세포 분화 마커인 CD86 발현의 증가와 연관성이 있었다. 그리고 heatmap 분석을 통하여 SOCS1/3 매개 STAT/JAK 신호 전달 경로가 luthione에 의한 면역 조절 증가에 관여함을 확인하였다. 결론적으로, 우리의 결과는 luthione이 M1 macrophage polarization의 분자 조절자로 작용하여 면역 능력을 향상시킬 수 있음을 시사한다.

조피볼락(Sebastes schlegelii) Interferon Regulatory Factor 8 (IRF8)의 분자유전학적 특성 및 발현 분석 (Molecular Characterization and Expression Analysis of Interferon Regulatory Factor 8 (IRF8) in the Black Rockfish Sebastes schlegelii)

  • 양혜림;권혁재;이성도;;김명진;이제희
    • 한국수산과학회지
    • /
    • 제50권3호
    • /
    • pp.302-310
    • /
    • 2017
  • Interferon regulatory factor 8 (IRF8) is essential for the development of B and T cells, as well as for the activity of dendritic cells and macrophages. We performed molecular characterization of IRF8 from rock fish, Sebastes schlegelii (Ss), and investigated the spatial and temporal profile of mRNA expression after challenge with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), or Streptococcus iniae. The full-length cDNA sequence of SsIRF8 was 1,657 bp, containing an ORF of 1,266 bp. The gene had a predicted molecular mass of 47.7 kDa and an isoelectric point of 5.99. The amino acid sequence coded by this gene showed the highest degree of identity (90.8%) and similarity (96.2%) with IRF8 from Oplegnathus fasciatus. The SsIRF8 mRNA was expressed ubiquitously, at varying levels, with the highest level of expression observed in the spleen. To confirm the role of SsIRF8 in mediating the immune response, we measured SsIRF8 mRNA expression in the splenic tissue at different time points after injection with LPS, poly I:C, or S. iniae. The qRT-PCR results showed that SsIRF8 mRNA expression in the poly I:C-injected group was highly upregulated 6 hr after exposure (P<0.05). Expression of SsIRF8 mRNA in the S. iniae-injected group peaked at 24 hr. These results suggest that SsIRF8 might be important in regulating the strength of the rockfish immune response to immunostimulatory agents.