• Title/Summary/Keyword: immune network

Search Result 959, Processing Time 0.019 seconds

Immunopathology and Immunotherapy of Inflammatory Skin Diseases

  • Ahreum Song;Sang Eun Lee;Jong Hoon Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.7.1-7.20
    • /
    • 2022
  • Recently, there have been impressive advancements in understanding of the immune mechanisms underlying cutaneous inflammatory diseases. To understand these diseases on a deeper level and clarify the therapeutic targets more precisely, numerous studies including in vitro experiments, animal models, and clinical trials have been conducted. This has resulted in a paradigm shift from non-specific suppression of the immune system to selective, targeted immunotherapies. These approaches target the molecular pathways and cytokines responsible for generating inflammatory conditions and reinforcing feedback mechanisms to aggravate inflammation. Among the numerous types of skin inflammation, psoriasis and atopic dermatitis (AD) are common chronic cutaneous inflammatory diseases. Psoriasis is a IL-17-mediated disease driven by IL-23, while AD is predominantly mediated by Th2 immunity. Autoimmune bullous diseases are autoantibody-mediated blistering disorders, including pemphigus and bullous pemphigoid. Alopecia areata is an organ-specific autoimmune disease mediated by CD8+ T-cells that targets hair follicles. This review will give an updated, comprehensive summary of the pathophysiology and immune mechanisms of inflammatory skin diseases. Moreover, the therapeutic potential of current and upcoming immunotherapies will be discussed.

Targeted Immunotherapy for Autoimmune Disease

  • Seung Min Jung;Wan-Uk Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.9.1-9.23
    • /
    • 2022
  • In the past few decades, biological drugs and small molecule inhibitors targeting inflammatory cytokines, immune cells, and intracellular kinases have become the standard-of-care to treat autoimmune diseases. Inhibition of TNF, IL-6, IL-17, and IL-23 has revolutionized the treatment of autoimmune diseases, such as rheumatoid arthritis, ankylosing spondylitis, and psoriasis. B cell depletion therapy using anti-CD20 mAbs has shown promising results in patients with neuroinflammatory diseases, and inhibition of B cell survival factors is approved for treatment of systemic lupus erythematosus. Targeting co-stimulatory molecules expressed on Ag-presenting cells and T cells is also expected to have therapeutic potential in autoimmune diseases by modulating T cell function. Recently, small molecule kinase inhibitors targeting the JAK family, which is responsible for signal transduction from multiple receptors, have garnered great interest in the field of autoimmune and hematologic diseases. However, there are still unmet medical needs in terms of therapeutic efficacy and safety profiles. Emerging therapies aim to induce immune tolerance without compromising immune function, using advanced molecular engineering techniques.

Targeting the Epithelium-Derived Innate Cytokines: From Bench to Bedside

  • Jongho Ham;Jae Woo Shin;Byeong Cheol Ko;Hye Young Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.11.1-11.26
    • /
    • 2022
  • When epithelial cells are exposed to potentially threatening external stimuli such as allergens, bacteria, viruses, and helminths, they instantly produce "alarmin" cytokines, namely, IL-33, IL-25, and TSLP. These alarmins alert the immune system about these threats, thereby mobilizing host immune defense mechanisms. Specifically, the alarmins strongly stimulate type-2 immune cells, including eosinophils, mast cells, dendritic cells, type-2 helper T cells, and type-2 innate lymphoid cells. Given that the alarm-raising role of IL-33, IL-25, and TSLP was first detected in allergic and infectious diseases, most studies on alarmins focus on their role in these diseases. However, recent studies suggest that alarmins also have a broad range of effector functions in other pathological conditions, including psoriasis, multiple sclerosis, and cancer. Therefore, this review provides an update on the epithelium-derived cytokines in both allergic and non-allergic diseases. We also review the progress of clinical trials on biological agents that target the alarmins and discuss the therapeutic potential of these agents in non-allergic diseases.

Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response

  • Yu Mi Baek;Soojin Yoon;Yeo Eun Hwang;Dong-Eun Kim
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.249-255
    • /
    • 2016
  • Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I.

Regulation of IgE-Mediated Food Allergy by IL-9 Producing Mucosal Mast Cells and Type 2 Innate Lymphoid Cells

  • Jee-Boong Lee
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.211-218
    • /
    • 2016
  • Due to the increasing prevalence and number of life-threatening cases, food allergy has emerged as a major health concern. The classic immune response seen during food allergy is allergen-specific IgE sensitization and hypersensitivity reactions to foods occur in the effector phase with often severe and deleterious outcomes. Recent research has advanced understanding of the immunological mechanisms occurring during the effector phase of allergic reactions to ingested food. Therefore, this review will not only cover the mucosal immune system of the gastrointestinal tract and the immunological mechanisms underlying IgE-mediated food allergy, but will also introduce cells recently identified to have a role in the hypersensitivity reaction to food allergens. These include IL-9 producing mucosal mast cells (MMC9s) and type 2 innate lymphoid cells (ILC2s). The involvement of these cell types in potentiating the type 2 immune response and developing the anaphylactic response to food allergens will be discussed. In addition, it has become apparent that there is a collaboration between these cells that contributes to an individual's susceptibility to IgE-mediated food allergy.

The Role of Plasmacytoid Dendritic Cells in Gut Health

  • Hye-Yeon Won;Ju-Young Lee;Dahye Ryu;Hyung-Taek Kim;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.6.1-6.14
    • /
    • 2019
  • Plasmacytoid dendritic cells (pDCs) are a unique subset of cells with different functional characteristics compared to classical dendritic cells. The pDCs are critical for the production of type I IFN in response to microbial and self-nucleic acids. They have an important role for host defense against viral pathogen infections. In addition, pDCs have been well studied as a critical player for breaking tolerance to self-nucleic acids that induce autoimmune disorders such as systemic lupus erythematosus. However, pDCs have an immunoregulatory role in inducing the immune tolerance by generating Tregs and various regulatory mechanisms in mucosal tissues. Here, we summarize the recent studies of pDCs that focused on the functional characteristics of gut pDCs, including interactions with other immune cells in the gut. Furthermore, the dynamic role of gut pDCs will be investigated with respect to disease status including gut infection, inflammatory bowel disease, and cancers.

IL-17-Producing Cells in Tumor Immunity: Friends or Foes?

  • Da-Sol Kuen;Byung-Seok Kim;Yeonseok Chung
    • IMMUNE NETWORK
    • /
    • v.20 no.1
    • /
    • pp.6.1-6.20
    • /
    • 2020
  • IL-17 is produced by RAR-related orphan receptor gamma t (RORγt)-expressing cells including Th17 cells, subsets of γδT cells and innate lymphoid cells (ILCs). The biological significance of IL-17-producing cells is well-studied in contexts of inflammation, autoimmunity and host defense against infection. While most of available studies in tumor immunity mainly focused on the role of T-bet-expressing cells, including cytotoxic CD8+ T cells and NK cells, and their exhaustion status, the role of IL-17-producing cells remains poorly understood. While IL-17-producing T-cells were shown to be anti-tumorigenic in adoptive T-cell therapy settings, mice deficient in type 17 genes suggest a protumorigenic potential of IL-17-producing cells. This review discusses the features of IL-17-producing cells, of both lymphocytic and myeloid origins, as well as their suggested pro- and/or anti-tumorigenic functions in an organ-dependent context. Potential therapeutic approaches targeting these cells in the tumor microenvironment will also be discussed.

Age-related Autoimmune Changes in Lacrimal Glands

  • Rodrigo G. de Souza;Cintia S. de Paiva;Milton R. Alves
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.3.1-3.17
    • /
    • 2019
  • Aging is a complex process associated with dysregulation of the immune system and low levels of inflammation, often associated with the onset of many pathologies. The lacrimal gland (LG) plays a vital role in the maintenance of ocular physiology and changes related to aging directly affect eye diseases. The dysregulation of the immune system in aging leads to quantitative and qualitative changes in antibodies and cytokines. While there is a gradual decline of the immune system, there is an increase in autoimmunity, with a reciprocal pathway between low levels of inflammation and aging mechanisms. Elderly C57BL/6J mice spontaneously show LGs infiltration that is characterized by Th1 but not Th17 cells. The aging of the LG is related to functional alterations, reduced innervation and decreased secretory activities. Lymphocytic infiltration, destruction, and atrophy of glandular parenchyma, ductal dilatation, and secretion of inflammatory mediators modify the volume and composition of tears. Oxidative stress, the capacity to metabolize and eliminate toxic substances decreased in aging, is also associated with the reduction of LG functionality and the pathogenesis of autoimmune diseases. Although further studies are required for a better understanding of autoimmunity and aging of the LG, we described anatomic and immunology aspects that have been described so far.

Evaluation of the Immune Response Following Exposure of Mice to Bisphenol A: Induction of Th1 Cytokine and Prolactin by BPA Exposure in the Mouse Spleen Cells

  • Youn, Ji-Youn;Park, Hyo-Young;Lee, Jung-Won;Jung, In-Ok;Choi, Keum-Hwa;Kim, Kyung-Jae;Cho, Kyung-Hea
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.946-953
    • /
    • 2002
  • Bisphenol A [2, 2 bis (4-hydoxyphenyl) propane; BPA] is a widely used endocrine disruptors and has estrogenic: activities. Although interests on biological effect of BPA are rising, evidences of its effect on immune system are lacking. We investigated that the effect of BPA on immune parameters to postulate the mechanism, and BPA interruptions between neuroendocrine and immune system. BPA was administrated to mice by p.o. (as a drinking water) dose on 0.015, 1.5 and 30 mg/ml for 4 weeks. The BPA treatment did not result in any change in body weight, spleen weight and distribution of lymphocyte subpopulation collected from spleen. BPA induced prolactin production in spleen, and exposure of SPA increased the activity of splenocyte proliferation in response to Con A (p<0.001). The production of a strong Th-1 type cytokine ($IFN-{\gamma}$) was induced while Th-2 type (IL-4) was suppressed by SPA treatment. These were consistent with RT-PCR results of transcription factor GATA-3 and IRF-1. These findings suggested that stimulation of prolactin production by estrogenic effects of SPA would affect cytokine profiles, and lead to imbalanced cellular immune response. In addition, we could speculate that prolactin and cytokine is important mediator involved in network between neuroendocrine and immune system by BPA.

Immunocell Therapy for Lung Cancer: Dendritic Cell Based Adjuvant Therapy in Mouse Lung Cancer Model (폐암의 면역세포 치료: 동물 모델에서 수지상 세포를 이용한 Adjuvant Therapy 가능성 연구)

  • Lee, Seog-Jae;Kim, Myung-Joo;In, So-Hee;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • Background: The anti-tumor therapeutic effect of autologous tumor cell lysate pulseddendritic cells (DCs) was studied for non-immunogenic and immune suppressive lung cancer model. To test the possibility as an adjuvant therapy, minimal residual disease model was considered in mouse in vivo experiments. Methods: Syngeneic 3LL lung cancer cells were inoculated intravenously into the C57BL/6 mouse. Autologous tumor cell (3LL) or allogeneic leukemia cell (WEHI-3) lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, tumor formation in the lung and the tumor-specific systemic immunity were observed. Tumor-specific lymphocyte proliferation and the IFN-${\gamma}$ secretion were analyzed for the immune monitoring. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with tumor cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor formation was suppressed in 3LL tumor cell lysate pulsed-DC treated group, while 3LL-specific immune stimulation was minimum. WEHI-3-specific immune stimulation occurred in WEHI-3 lysate-pulsed DC treated group, which had no correlation with tumor regression. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs as an adjuvant therapy for minimal residual disease state of lung cancer. The significance of immune modulation in DC therapy including the possible involvement of NK cell as well as antigen-specific cytotoxic T cell activity induction was discussed.