• Title/Summary/Keyword: immune mechanism

Search Result 658, Processing Time 0.025 seconds

Schizophrenia and Immunological Abnormalities (정신분열병과 면역학적 이상)

  • Jung, Hee Yeon;Kim, Yong-Sik
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.3
    • /
    • pp.152-174
    • /
    • 2008
  • There have been vast amount studies regarding immunologic dysregulation in schizophrenia. The mechanism of immune pathogenesis in schizophrenia still is unclear, even though various immune dysfunction have been reported. We endeavored to report on two major hypothesis on immunologic dysregulation in schizophrenia, the infection hypothesis and autoimmune hypothesis. We went on to focus on the autoimmune hypothesis, which has received the most attention over the years. We explored the accumulated data and the rational behind the autoimmune hypothesis and the implications of the autoimmune hypothesis for future research in the pathogenesis of schizophrenia.

  • PDF

Immunoadjuvanticity of Novel CpG ODN (Oligodeoxynucleotide)

  • Park, Su-Jung;Cho, Hyeon-Cheol;Bae, Keum-Seok;Kim, Soo-Ki
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.46-52
    • /
    • 2007
  • In the course of novel TLR (Toll like receptor) 9 ligand, we found novel CpG ODN (Oligodeoxynucleotide) was active in augmenting antibody in mice. However, immune mechanism of new CpG ODNs is unclear. To clarify this, we examined immunoadjuvanticity by employing in vitro and in vivo immune profiles. In brief, in vitro treatment of novel CpG ODN upregulated the expression of TNF-$\alpha$, IL-6, and IL-12 mRNA in macrophages as well as that of IFN-$gamma$ mPNA in mouse splenocytes. In parallel, in vivo injection of novel CpG ODN directly activates macrophages and splenocytess, consequently upregulating MHC class II and CD86. Finally, we demonstrated anti-HBs antibody augmentation of novel CpG ODN. Collectively, this data indicates that novel CpG ODN is immunoadjuvant armed with Th1 typed immune machinery.

Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal

  • Kim, Chan-Hee;Park, Ji-Won;Ha, Nam-Chul;Kang, Hee-Jung;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.93-101
    • /
    • 2008
  • The major cell wall components of bacteria are lipopolysaccharide, peptidoglycan, and teichoic acid. These molecules are known to trigger strong innate immune responses in the host. The molecular mechanisms by which the host recognizes the peptidoglycan of Gram-positive bacteria and amplifies this peptidoglycan recognition signals to mount an immune response remain largely unclear. Recent, elegant genetic and biochemical studies are revealing details of the molecular recognition mechanism and the signalling pathways triggered by bacterial peptidoglycan. Here we review recent progress in elucidating the molecular details of peptidoglycan recognition and its signalling pathways in insects. We also attempt to evaluate the importance of this issue for understanding innate immunity.

Immunomodulatory Response Induced by Ginseng

  • Kumar Ashok
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.366-375
    • /
    • 2002
  • There has been continuing interest in the development of synthetic and natural compounds that modify the immune response particularly for the treatment of AIDS and cancer. During the past fifty years, numerous scientific studies have been published on ginseng (Foster and Chongxi, 1992). Modern human studies have investigated preventive effect of ginseng on several kinds of cancer (Yun et al, 1993,Yun, 1995,Yun and Choi, 1998), its long term immunological effect on HIV patients (Sankang, 1989, Cho et al, 1997), its effect on cell mediated immune functions in healthy volunteers (Scaglione et al, 1990). Similarly non clinical studies on animal model system have studied the chemopreventive action of ginseng on cancer (Kumar, 1993,98) and immunological properties of ginseng (Kim et al, 1990, Tomoda et al, 1993, Yun et al, 1993, Mizuno et al, 1994,Lee et al, 1997, Park et al, 2001,Yoshikawa et al, 2001, Wang et al, 2001). The precise mechanism of action of ginseng, however, not clearly understood. Considering its wide-ranging therapeutic effects, this study is being undertaken to elucidate the general mode of action of ginseng, especially to test our hypothesis that its biological action may be mediated by the immune system.

  • PDF

Altered Gravity and Immune Response (중력 변화의 면역계에 대한 영향)

  • Jang, Tae Young;Kim, Kyu-Sung;Kim, Young Hyo
    • Korean journal of aerospace and environmental medicine
    • /
    • v.28 no.1
    • /
    • pp.6-8
    • /
    • 2018
  • It is essential to study the effects of hypergravity on the human body in the research field of aerospace medicine. Previous studies have shown that hypergravity could act in a harmful way to the human body. However, recent studies have shown that moderate degree of hypergravity can act in a beneficial way to the human body. The authors have in particular been studying the effects of hypergravity on immune diseases, especially allergic asthma and rhinitis. Therefore, this review paper will introduce the results of recent studies on hormetic (health promotion) effect of hypergravity. In addition, this review paper also examines the mechanism by which hormetic effect of hypergravity could be possible. Furthermore, we will also discuss how to apply these hormetic effects in clinical practice.

Original Antigenic Sin Response to RNA Viruses and Antiviral Immunity

  • Mee Sook Park;Jin Il Kim;Sehee Park;Ilseob Lee;Man-Seong Park
    • IMMUNE NETWORK
    • /
    • v.16 no.5
    • /
    • pp.261-270
    • /
    • 2016
  • The human immune system has evolved to fight against foreign pathogens. It plays a central role in the body's defense mechanism. However, the immune memory geared to fight off a previously recognized pathogen, tends to remember an original form of the pathogen when a variant form subsequently invades. This has been termed 'original antigenic sin'. This adverse immunological effect can alter vaccine effectiveness and sometimes cause enhanced pathogenicity or additional inflammatory responses, according to the type of pathogen and the circumstances of infection. Here we aim to give a simplified conceptual understanding of virus infection and original antigenic sin by comparing and contrasting the two examples of recurring infections such as influenza and dengue viruses in humans.

Immunologic Aspects at the Feto-Maternal Interface (태아모체간 계면에서의 면역학적 측면)

  • 정인배
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.93-100
    • /
    • 2001
  • Precise mechanism by which the fetus can escape from mother's immune rejection is not well understood yet over the last 50 years. The clarification of immune mechanism at the feto-maternal interface is very important, because this can be a common pathogenesis of various pathologic conditions including spontaneous abortion, habitual abortion fetal growth restriction preeclampsia, implantation failure after assisted reproductive techniques, and fetal death. In this review, current hypothetical contents were described with the priority of importance: 1) The center of this mechanism is cross-talk between the expression of HLA-C, E, G on the extravillous cytotrophoblasts and their receptors on decidual NK cell, 2) immunomodulation, 3) innate immunity is the main immunologic mechanism, 4) various mechanisms besides HLA system(eq. complement) may be associated. The overall balance of immunomodulation among these mechanisms should result in the outcome of each pregnancy. Further researches regarding the regulation of HLA system, roles of cytokines, complements should be followed in the future.

  • PDF

Intelligent Tuning Of a PID Controller Using Immune Algorithm (면역 알고리즘을 이용한 PID 제어기의 지능 튜닝)

  • Kim, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.8-17
    • /
    • 2002
  • This paper suggests that the immune algorithm can effectively be used in tuning of a PID controller. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes according to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach have been used to describe dynamic model relationship between antibody and antigen. Therefore, there are some problems with a less flexible result to the external behavior. On the other hand, a number of tuning technologies have been considered for the tuning of a PID controller. As a less common method, the fuzzy and neural network or its combined techniques are applied. However, in the case of the latter, yet, it is not applied in the practical field, in the former, a higher experience and technology is required during tuning procedure. In addition to that, tuning performance cannot be guaranteed with regards to a plant with non-linear characteristics or many kinds of disturbances. Along with these, this paper used immune algorithm in order that a PID controller can be more adaptable controlled against the external condition, including moise or disturbance of plant. Parameters P, I, D encoded in antibody randomly are allocated during selection processes to obtain an optimal gain required for plant. The result of study shows the artificial immune can effectively be used to tune, since it can more fit modes or parameters of the PID controller than that of the conventional tuning methods.

The Effect of Ginseng Saponin on the Mouse Immune System (생쥐의 면역계에 미치는 인삼 사포닌의 영향)

  • 김미정;정노팔
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.130-135
    • /
    • 1987
  • To detect the effect of ginseng saponin on the immune response, mice were immunized with a protein antigen (gamma-globulin of chick). Blood was then drawn from them twice, after 10 days of the first immunization and after 10 days of the second immunization respectively, and measurements were made by ELISA method of the antibody titer in antiserum. In addition, mice that has been immunized with the same antigen were treated with immunosuppressor to suppress the immune system of the mice. After the immune system was suppressed, the effect of ginseng saponin on the recovery of immune response was measured by the same method. The experimental groups those were given ginseng saponin (10 mg/kg/day) showed a little variance between-individuals, however showed much higher antibody titer than the control groups those were given the saline solution. Moreover, there was a little recovery from the immune suppression. Although the mechanism of the effect of ginseng saponin on immune response was not well loom, it is believed that ginseng saponin has the effect of increasing the synthesis of serum protein together with its action as one of the immunostimulators.

  • PDF

Harnessing NK cells for cancer immunotherapy: immune checkpoint receptors and chimeric antigen receptors

  • Kim, Nayoung;Lee, Dong-Hee;Choi, Woo Seon;Yi, Eunbi;Kim, HyoJeong;Kim, Jung Min;Jin, Hyung-Seung;Kim, Hun Sik
    • BMB Reports
    • /
    • v.54 no.1
    • /
    • pp.44-58
    • /
    • 2021
  • Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize anti-tumor activity while preventing tumor immune escape. The current therapeutic modalities yielding encouraging results in clinical trials include the blockade of immune checkpoint receptors to overcome the immune-evasion mechanism used by tumors and the incorporation of tumor-directed chimeric antigen receptors to enhance NK cell anti-tumor specificity and activity. These observations, together with recent advances in the understanding of NK cell activation within the tumor microenvironment, will facilitate the optimal design of NK cell-based therapy against a broad range of cancers and, more desirably, refractory cancers.