• 제목/요약/키워드: immune inhibitor

검색결과 211건 처리시간 0.024초

Levamisole이 양식뱀장어의 면역조절작용 및 항균효과에 미치는 영향 (In vivo, Immunomodulatory and Antibacterial Reaction of Levamisole in Cultured Eel, Anguilla japonica)

  • 최민순;박관하;조정곤
    • 한국임상수의학회지
    • /
    • 제15권1호
    • /
    • pp.36-40
    • /
    • 1998
  • This experiment was carried out in order to evaluate the immunomodulatory activity of levamisole (LMS) in 5. fgrjn challenged eels with different treatment regimens: 7-day LMS treatment before the challenge, 7-day LMS treatment started simultaneously with the challenge, 14-day treatment before and after the challenge. The antibacterial effect was activated in all treated groups, with the best being obtained in the simultaneously treated group. LMS stimulated the defense mechanisms of the eel as demonstrated by increase in the level of total protein, albumin, trypsin inhibitor capacity, lysozyme activity, antibody titers antibacterial activity and survival rate. These results suggest that antibacterial effects of LMS was achieved by not only non-specific immune response but also specific one in eel.

  • PDF

Role of metabolism by flavin-containing monooxygenase in thioacetamide-induced immunosuppression

  • Lee, Jeong W.;Ki D. Shin;Shin W. Cha;Kim, Jong-C.;Kim, Eun J.;Sang S. Han;Tae C. Jeong;Woo S. Koh
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.121-121
    • /
    • 2001
  • Thioacetamide has been known to cause immune suppression. In this report we studied the role of metabolic activation by flavin-containing monooxygenase in the thioacetamide-induced immune response. To determine whether the metabolites of thioacetamide produced by flavin-containing monooxygenase result in the immunosuppression, methimazole, a flavin-containing monooxygenase inhibitor, was used to block the flavin-containing monooxygenase pathway.(omitted)

  • PDF

Adrenal insufficiency development during chemotherapy plus anti-programmed death receptor-1 monoclonal antibody (tislelizumab) therapy in patients with advanced gastric cancer: two case reports

  • Baek, Jin Ho
    • Journal of Yeungnam Medical Science
    • /
    • 제39권1호
    • /
    • pp.62-66
    • /
    • 2022
  • Immune checkpoint inhibitor (ICI)-associated adrenal insufficiency is rare but may become a serious adverse event in patients treated with ICIs. The present case report documents two cases of adrenal insufficiency developed during chemotherapy plus tislelizumab (百泽安, Baize'an; BeiGene Ltd.) therapy in patients with advanced gastric cancer. Adrenal insufficiency developed after 6 and 13 cycles of treatment and was well controlled with hydrocortisone. The patients also developed hypothyroidism, which was managed with levothyroxine. Two patients showed a partial response, and one patient out of two achieved a near-complete response, sustaining over 11 months. Increased awareness of ICI-related adrenal insufficiency is crucial for early detection and prompt management of patients treated with ICIs.

XRP44X Enhances the Cytotoxic Activity of Natural Killer Cells by Activating the c-JUN N-Terminal Kinase Signaling Pathway

  • Kim, Kwang-Soo;Park, Kyung-Soon
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권1호
    • /
    • pp.53-62
    • /
    • 2020
  • Natural killer (NK) cells are innate lymphocytes that play an essential role in preventing cancer development by performing immune surveillance to eradicate abnormal cells. Since ex vivo expanded NK cells have cytotoxic activity against various cancers, including breast cancers, their clinical potential as immune-oncogenic therapeutics has been widely investigated. Here, we report that the pyrazole chemical XRP44X, an inhibitor of Ras/ERK activation of ELK3, stimulates NK-92MI cells to enhance cytotoxic activity against breast cancer cells. Under XRP44X stimulation, NK cells did not show notable apoptosis or impaired cell cycle progression. We demonstrated that XRP44X enhanced interferon gamma expression in NK-92MI cells. We also elucidated that potentiation of the cytotoxic activity of NK-92MI cells by XRP44X is induced by activation of the c-JUN N-terminal kinase (JNK) signaling pathway. Our data provide insight into the evaluation of XRP44X as an immune stimulant and that XRP44X is a potential candidate compound for the therapeutic development of NK cells.

Ginsan Enhances Humoral Antibody Response to Orally Delivered Antigen

  • Na, Hee Sam;Lim, You Jin;Yun, Yeon-Sook;Kweon, Mi Na;Lee, Hyun-Chul
    • IMMUNE NETWORK
    • /
    • 제10권1호
    • /
    • pp.5-14
    • /
    • 2010
  • Background: There have been several reports describing the capability of ginseng extracts as an adjuvant. In this study, we tested if ginsan, a polysaccharide extracted from Panax ginseng, was effective in enhancing antibody response to orally delivered Salmonella antigen. Methods: Ginsan was treated before oral salmonella antigen administration. Salmonella specific antibody was determined by ELISA. mRNA expression was determined by RT-PCR. Cell migration was determined by confocal microscopy and flow cytometry. COX expression was detected by western blot. Results: Ginsan treatment before oral Salmonella antigen delivery significantly increased both secretory and serum antibody production. Ginsan increased the expression of COX in the Peyer's patches. Various genes were screened and we found that CCL3 mRNA expression was increased in the Peyer's patch. Ginsan increased dendritic cells in the Peyer's patch and newly migrated dendritic cells were mostly found in the subepithelial dome region. When COX inhibitors were treated, the expression of CCL3 was reduced. COX inhibitor also antagonized both the migration of dendritic cells and the humoral immune response against oral Salmonella antigen. Conclusion: Ginsan effectively enhances the humoral immune response to orally delivered antigen, mediated by CCL3 via COX. Ginsan may serve as a potent vaccine suppliment for oral immunization.

Cytotoxic Effect of Triglycerides via Apoptotic Caspase Pathway in Immune and Non-immune Cell Lines

  • Lim, Jaewon;Yang, Eun Ju;Chang, Jeong Hyun
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.66-74
    • /
    • 2019
  • Hyperlipidemia is defined as conditions of the accumulation of lipids such as free fatty acids (FFA), triglyceride (TG), cholesterol and/or phospholipid in the bloodstream. Hyperlipidemia can cause lipid accumulation in non-adipose tissue, which is lipid-cytotoxic effects in many tissues and mediates cell dysfunction, inflammation or programmed cell death (PCD). TG is considered to be a major cause of atherosclerosis through inflammatory necrosis of vascular endothelial cells. Recently, TG have also been shown to exhibit lipid-cytotoxicity and induce PCD. Therefore, we investigated the effect of TG on the cytotoxic effect of various cell types. When exposed to TG, the cell viability of U937 monocytes and Jurkat T lymphocytes, as well as the cell viability of MCF-7, a non-immune cell, decreased in time- and dose-dependent manner. In U937 cells and Jurkat cells, caspase-9, an intrinsic apoptotic caspase, and caspase-8, an extrinsic apoptotic caspase, were increased by exposure to TG. However, in TG-treated MCF-7 cells, caspase-8 activity increased only without caspase-9 activity. In addition, the reduction of cell viability by TG was recovered when all three cell lines were treated with pan-caspase inhibitor. These results suggest that activation of apoptotic caspases by TG causes lipotoxic effect and decreases cell viability.

Canavalia gladiata regulates the immune responses of macrophages differently depending on the extraction method

  • Lee, Ha-Nul;Kim, Young-Min;Jang, Ah-Ra;Kim, Young Ran;Park, Jong-Hwan
    • 한국식품과학회지
    • /
    • 제52권6호
    • /
    • pp.622-626
    • /
    • 2020
  • Recent studies have suggested that Canavalia gladiate, a dietary food and traditional folk medicine, has promising pharmaceutical potential, but the effects have mostly been demonstrated using its organo-soluble extract. To date, its immunomodulatory effect depending on the extraction method is unclear. Here, the immune responses of macrophages to C. gladiate and the underlying mechanisms were studied. C. gladiate hot water extract (CGW) induced cytokine production in bone marrow-derived macrophages (BMDMs) in a dose-dependent manner, whereas its ethanolic extract (CGE) did not. Immunoblotting analysis also showed that CGW activated nuclear factor (NF)-κB and mitogen-activated protein kinases (MAPKs). Moreover, an inhibitor assay revealed the involvement of NF-κB, p38, and JNK, but not ERK, in CGW-induced cytokine production. CGE inhibited lipopolysaccharide-stimulated production of pro-inflammatory cytokines and activation of NF-κB and MAPKs in BMDMs. The results suggest that C. gladiate regulates the immune responses of macrophages differently depending on the extraction method.

Vorinostat-induced acetylation of RUNX3 reshapes transcriptional profile through long-range enhancer-promoter interactions in natural killer cells

  • Eun-Chong Lee;Kyungwoo Kim;Woong-Jae Jung;Hyoung-Pyo Kim
    • BMB Reports
    • /
    • 제56권7호
    • /
    • pp.398-403
    • /
    • 2023
  • Natural killer (NK) cells are an essential part of the innate immune system that helps control infections and tumors. Recent studies have shown that Vorinostat, a histone deacetylase (HDAC) inhibitor, can cause significant changes in gene expression and signaling pathways in NK cells. Since gene expression in eukaryotic cells is closely linked to the complex three-dimensional (3D) chromatin architecture, an integrative analysis of the transcriptome, histone profiling, chromatin accessibility, and 3D genome organization is needed to gain a more comprehensive understanding of how Vorinostat impacts transcription regulation of NK cells from a chromatin-based perspective. The results demonstrate that Vorinostat treatment reprograms the enhancer landscapes of the human NK-92 NK cell line while overall 3D genome organization remains largely stable. Moreover, we identified that the Vorinostat-induced RUNX3 acetylation is linked to the increased enhancer activity, leading to elevated expression of immune response-related genes via long-range enhancer-promoter chromatin interactions. In summary, these findings have important implications in the development of new therapies for cancer and immune-related diseases by shedding light on the mechanisms underlying Vorinostat's impact on transcriptional regulation in NK cells within the context of 3D enhancer network.

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

Inhibition of Leukocyte Adhesion by Developmental Endothelial Locus-1 (Del-1)

  • Choi, Eun-Young
    • IMMUNE NETWORK
    • /
    • 제9권5호
    • /
    • pp.153-157
    • /
    • 2009
  • The leukocyte adhesion to endothelium is pivotal in leukocyte recruitment which takes place during inflammatory, autoimmune and infectious conditions. The interaction between leukocytes and endothelium requires an array of adhesion molecules expressed on leukocytes and endothelial cells, thereby promoting leukocyte recruitment into sites of inflammation and tissue injury. Intervention with the adhesion molecules provides a platform for development of anti-inflammatory therapeutics. This review will focus on developmental endothelial locus-1 (Del-1), an endogenous inhibitor of leukocyte adhesion.