• Title/Summary/Keyword: immune evasion

Search Result 49, Processing Time 0.027 seconds

Single-Cell Sequencing in Cancer: Recent Applications to Immunogenomics and Multi-omics Tools

  • Sierant, Michael C.;Choi, Jungmin
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.17.1-17.6
    • /
    • 2018
  • Tumor heterogeneity, the cellular mosaic of multiple lineages arising from the process of clonal evolution, has continued to thwart multi-omics analyses using traditional bulk sequencing methods. The application of single-cell sequencing, in concert with existing genomics methods, has enabled high-resolution interrogation of the genome, transcriptome, epigenome, and proteome. Applied to cancers, these single-cell multi-omics methods bypass previous limitations on data resolution and have enabled a more nuanced understanding of the evolutionary dynamics of tumor progression, immune evasion, metastasis, and treatment resistance. This review details the growing number of novel single-cell multi-omics methods applied to tumors and further discusses recent discoveries emerging from these approaches, especially in regard to immunotherapy.

Complete Genome Sequences of Two Clonal Complex 398 Methicillin-Resistant Staphylococcus aureus Strains Isolated from Patients in Korea

  • Gi Yong Lee;Ji Heon Park;Ji Hyun Lim;Soo-Jin Yang
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.132-133
    • /
    • 2023
  • Clonal complex (CC) 398 community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has emerged worldwide in a variety of livestock animals and humans. We report complete genome sequences of Panton-Valentine leucocidin (PVL) and immune evasion cluster (IEC) gene-positive CC398 MRSA strains isolated from patients in Korea.

Zika Virus Proteins NS2A and NS4A Are Major Antagonists that Reduce IFN-β Promoter Activity Induced by the MDA5/RIG-I Signaling Pathway

  • Ngan, Nguyen Thi Thuy;Kim, Seong-Jun;Lee, Jeong Yoon;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1665-1674
    • /
    • 2019
  • Zika virus (ZIKV) is a mosquito-transmitted, emerging Flavivirus that causes Guillain-$Barr{\acute{e}}$ syndrome and microcephaly in adults and fetuses, respectively. Since ZIKV was first isolated in 1947, severe outbreaks have occurred at various places worldwide, including Yap Island in 2007, French Polynesia in 2013, and Brazil in 2015. Although incidences of ZIKV infection and dissemination have drastically increased, the mechanisms underlying the pathogenesis of ZIKV have not been sufficiently studied. In addition, despite extensive research, the exact roles of individual ZIKV genes in the viral evasion of the host innate immune responses remain elusive. Besides, it is still possible that more than one ZIKV-encoded protein may negatively affect type I interferon (IFN) induction. Hence, in this study, we aimed to determine the modulations of the IFN promoter activity, induced by the MDA5/RIG-I signaling pathway, by over-expressing individual ZIKV genes. Our results show that two nonstructural proteins, NS2A and NS4A, significantly down-regulated the promoter activity of IFN-${\beta}$ by inhibiting multiple signaling molecules involved in the activation of IFN-${\beta}$. Interestingly, while NS2A suppressed both full-length and constitutively active RIG-I, NS4A had inhibitory activity only on full-length RIG-I. In addition, while NS2A inhibited all forms of IRF3 (full-length, regulatory domain-deficient, and constitutively active), NS4A could not inhibit constitutively active IRF3-5D. Taken together, our results showed that NS2A and NS4A play major roles as antagonists of MDA5/RIG-I-mediated IFN-${\beta}$ induction and more importantly, these two viral proteins seem to inhibit induction of the type I IFN responses in differential mechanisms. We believe this study expands our understanding regarding the mechanisms via which ZIKV controls the innate immune responses in cells and may pave the way to development of ZIKV-specific therapeutics.

miR-195/miR-497 Regulate CD274 Expression of Immune Regulatory Ligands in Triple-Negative Breast Cancer

  • Yang, Lianzhou;Cai, Yuchen;Zhang, Dongsheng;Sun, Jian;Xu, Chenyu;Zhao, Wenli;Jiang, Wenqi;Pan, Chunhua
    • Journal of Breast Cancer
    • /
    • v.21 no.4
    • /
    • pp.371-381
    • /
    • 2018
  • Purpose: Immune suppression is common in patients with advanced breast cancer but the mechanisms underlying this phenomenon have not been sufficiently studied. In this study, we aimed to identify B7 family members that were able to predict the immune status of patients, and which may serve as potential targets for the treatment of breast cancer. We also aimed to identify microRNAs that may regulate the expression of B7 family members. Methods: The Cancer Genome Atlas data from 1,092 patients with breast cancer, including gene expression, microRNA expression and survival data, were used for statistical and survival analyses. Polymerase chain reaction and Western blot were used to measure messenger RNA and protein expression, respectively. Luciferase assay was used to investigate direct microRNA target. Results: Bioinformatic analysis predicted that microRNA (miR)-93, miR-195, miR-497, and miR-340 are potential regulators of the immune evasion of breast cancer cells, and that they exert this function by targeting CD274, PDCD1LG2, and NCR3LG1. We chose CD274 for further investigations. We found that miR-195, miR-497, and CD274 expression levels were inversely correlated in MDA-MB-231 cells, and miR-195 and miR-497 expressions mimic inhibited CD274 expression in vitro. Mechanistic investigations demonstrated that miR-195 and miR-497 directly target CD274 3' untranslated region. Conclusion: Our data indicated that the level of B7 family members can predict the prognosis of breast cancer patients, and miR-195/miR-497 regulate CD274 expression in triple negative breast cancer. This regulation may further influence tumor progression and the immune tolerance mechanism in breast cancer and may be able to predict the effect of immunotherapy on patients.

Activities of different cysteine proteases of Pcrogonimn westermani in cleaving human IgG (발육단계별로 정제한 폐흡충 시스테인계열 단백분해효소의 IgG 분해양상)

  • 정영배;양현종
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.2
    • /
    • pp.139-142
    • /
    • 1997
  • Cleaving host immunoglobulins is a well known mechanism of evading host immune reactions exploited by helminth parasites, Secreted cysteine proteases of helminth are a part of enzymes cleaving host IgG. Porogonimw westemani produces at least six different species of the cysteine protease in its developmental stages. This study was undertaken to evaluate comparatively the activities against human IgG by the different enzymes. When the metacercariae, which secrete 27 and 28 kDa cysteine proteases, were incubated in human IgG solution, IgG was degraded at its hinge region. Further incubation resulted complete hydrolysis. From 4-week and 7-week old juveniles and 16-week old adults of p. westemani, five different enzymes at 15, 17. 27 28 and 53 kDa have been purified, if the enzyme with the same molecular mass is regarded to be identical. In cleaving human IgG, each cysteine protease exhibited decreasing activities with age.

  • PDF

Middle East Respiratory Syndrome Coronavirus-Encoded Accessory Proteins Impair MDA5-and TBK1-Mediated Activation of NF-κB

  • Lee, Jeong Yoon;Bae, Sojung;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1316-1323
    • /
    • 2019
  • Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging coronavirus which is zoonotic from bats and camels. Its infection in humans can be fatal especially in patients with preexisting conditions due to smoking and chronic obstructive pulmonary disease (COPD). Among the 25 proteins encoded by MERS-CoV, 5 accessory proteins seem to be involved in viral evasion of the host immune responses. Here we report that ORF4a, ORF4b, and ORF8b proteins, alone or in combination, effectively antagonize nuclear factor kappa B ($NF-{\kappa}B$) activation. Interestingly, the inhibition of $NF-{\kappa}B$ by MERS-CoV accessory proteins was mostly at the level of pattern recognition receptors: melanoma differentiation-associated gene 5 (MDA5). ORF4a and ORF4b additively inhibit MDA5-mediated activation of $NF-{\kappa}B$ while that of retinoic acid-inducible gene 1 (RIG-I) is largely not perturbed. Of note, ORF8b was found to be a novel antagonist of MDA5-mediated $NF-{\kappa}B$ activation. In addition, ORF8b also strongly inhibits Tank-binding kinase 1 (TBK1)-mediated induction of $NF-{\kappa}B$ signaling. Taken together, MERS-CoV accessory proteins are involved in viral escape of $NF-{\kappa}B$-mediated antiviral immune responses.

MicroRNA expression profiling in the lungs of genetically different Ri chicken lines against the highly pathogenic avian influenza H5N1 virus

  • Sooyeon Lee;Suyeon Kang;Jubi Heo;Yeojin Hong;Thi Hao Vu;Anh Duc Truong;Hyun S Lillehoj;Yeong Ho Hong
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.838-855
    • /
    • 2023
  • The highly pathogenic avian influenza (HPAI) virus triggers infectious diseases, resulting in pulmonary damage and high mortality in domestic poultry worldwide. This study aimed to analyze miRNA expression profiles after infection with the HPAI H5N1 virus in resistant and susceptible lines of Ri chickens.For this purpose, resistant and susceptible lines of Vietnamese Ri chicken were used based on the A/G allele of Mx and BF2 genes. These genes are responsible for innate antiviral activity and were selected to determine differentially expressed (DE) miRNAs in HPAI-infected chicken lines using small RNA sequencing. A total of 44 miRNAs were DE after 3 days of infection with the H5N1 virus. Computational program analysis indicated the candidate target genes for DE miRNAs to possess significant functions related to cytokines, chemokines, MAPK signaling pathway, ErBb signaling pathway, and Wnt signaling pathway. Several DE miRNA-mRNA matches were suggested to play crucial roles in mediating immune functions against viral evasion. These results revealed the potential regulatory roles of miRNAs in the immune response of the two Ri chicken lines against HPAI H5N1 virus infection in the lungs.

Purification and characterization of a 33 kDa serine protease from Acanthamoeba lugdunensis KA/E2 isolated from a Korean keratitis patient

  • Kim, Hyo-Kyung;Ha, Young-Ran;Yu, Hak-Sun;Kong, Hyun-Hee;Chung, Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.4
    • /
    • pp.189-196
    • /
    • 2003
  • In order to evaluate the possible roles of secretory proteases in the pathogenesis of amoebic keratitis, we purified and characterized a serine protease secreted by Acanthamoeba lugdunensis KA/E2, isolated from a Korean keratitis patient The ammonium sulfate-precipitated culture supernatant of the isolate was purified by sequential chromatography on CM-Sepharose, Sephacryl S-200, and mono Q-anion exchange column. The purified 33 kDa protease had a pH optimum of 8.5 and a temperature optimum of $55^{\circ}C$. Phenylmethylsulfonylfluoride and 4-(2-Aminoethyl)-benzenesulfonyl-fluoride, both serine protease specific inhibitors, inhibited almost completely the activity of the 33 kDa protease whereas other classes of inhibitors did not affect its activity. The 33 kDa enzyme degraded various extracellular matrix proteins and serum proteins. Our results strongly suggest that the 33 kDa serine protease secreted from this keratopathogenic Acanthamoeba play important roles in the pathogenesis of amoebic keratitis, such as in corneal tissue invasion, immune evasion and nutrient uptake.

Partial Purification and Characterization of a Cysteine Protease Inhibitor from the Plerocercoid of Spirometra erinacei

  • Chung, Young-Bae;Yang, Hyun-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.3
    • /
    • pp.183-186
    • /
    • 2008
  • Helminthic cysteine proteases are well known to play critical roles in tissue invasion, nutrient uptake, and immune evasion of the parasites. In the same manner, the sparganum, the plerocercoid of Spirometra mansoni, is also known to secrete a large amount of cysteine proteases. However, cysteine protease inhibitors regulating the proteolytic activities of the cysteine protease are poorly illustrated. In this regard, we partially purified an endogenous cysteine protease inhibitor from spargana and characterized its biochemical properties. The cysteine protease inhibitor was purified by sequential chromatographies using Resource Q anion exchanger and Superdex 200 HR gel filtration from crude extracts of spargana. The molecular weight of the purified protein was estimated to be about 11 kD on SDS-PAGE. It was able to inhibit papain and 27 kDa cysteine protease of spargana with the ratio of 25.7% and 49.1%, respectively, while did not inhibit chymotrypsin. This finding suggests that the cysteine protease inhibitor of spargana may be involved in regulation of endogenous cysteine proteases of the parasite, rather than interact with cysteine proteases from their hosts.

Molecular Characteristics and Exotoxins of Methicillin-Resistant Staphylococcus aureus

  • Bae, Jinyoung;Jin, Hyunwoo;Kim, Jungho;Park, Min;Lee, Jiyoung;Kim, Sunghyun
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.195-207
    • /
    • 2021
  • Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen capable of causing human diseases, such as soft tissue infection, bacteremia, endocarditis, toxic shock syndrome, pneumonia, and sepsis. Although the incidence rate of diseases caused by MRSA has declined in recent years, these diseases still pose a clinical threat due to their consistently high morbidity and mortality rates. However, the role of virulence factors in staphylococcal infections remains incompletely understood. Methicillin resistance, which confers resistance to all β-lactam antibiotics in cellular islets, is mediated by the mecA gene in the staphylococcal cassette chromosome mec (SCCmec). Differences in SCCmec types and differences in their sizes and structures serve epidemiological purposes and are used to differentiate between hospital-associated (HA)-MRSA and community-associated (CA)-MRSA. Some virulence factors of S. aureus are also providing a distinction between HA-MRSA and CA-MRSA. These factors vary depending on the presence of toxins, adhesion, immune evasion, and other virulence determinants. In this review, we summarized an overview of MRSA such as resistance mechanisms, SCCmec types, HA- and CA-MRSA, and virulence factors that enhance pathogenicity or MRSA epidemiology, transmission, and genetic diversity.