• Title/Summary/Keyword: immobilized enzymes

Search Result 113, Processing Time 0.029 seconds

Continuous Production of Fructooligosaccharides from Sucrose by a Dual Immobilized Enzyme System of Fructosyltransferase and Glucose Isomerase (과당전이효소와 포도당 이성화 효소의 고정화 혼합효소계에 의한 설탕으로부터 프락토올리고당의 연속생산)

  • 윤종원;서근학송승구
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 1995
  • Continuous production of fructooligosaccharides from sucrose by a dual immobilized enzyme system of fructosyltransferase and glucose isomerase was studied in a column reactor. The optimal temperature and pH of the immobilized fructosyltransferase were $65^{\circ}C$ and 5.5, respectively. The activity of glucose isomerase was favorable as temperature and pH were increased within the ranges examined. However, both the immobilized enzymes were thermally unstable over $5^{\circ}C$, suggesting that long-term operation of the dual immobilized enzyme column should be carried out below $50^{\circ}C$. The optimum packing ratio of fructosyltransferase to glucose isomerase was found to be around 5/3. Under the optimized reaction conditions, the dual enzyme column was successfully operated for 40 days without any loss of initial enzyme activities, yielding 66% of fructooligosaccharides. Furthermore, the relative sweetness of fructooligosaccharides produced by a dual emzyme system was enhanced by 6% compared with that of fructosyltransferase alone.

  • PDF

Production of Sorbitol Using Dried and Immobilized Zymomonas mobilis (건조 고정화 Zymomonas mobilis에 의한 sorbitol 생산)

  • 박철진;장기효전억한
    • KSBB Journal
    • /
    • v.7 no.2
    • /
    • pp.144-148
    • /
    • 1992
  • The purpose of this study is to develop a continuous process for sorbitol production using dried Zymomonas mobilis immobilized in K-carrageenan. The methods of glularaldehyde cross-linking of enzymes in CTAB (celyltrimetylammoniumbromide) treated cells immobilized in K-carrageenan showed stability for the production of sorbitol for 30 days of operation. K-carrageenan beads entrapping permeabilized cells were dried to Improve bead rigidity and storage stability. A semi-batch process with dry beads was carried out and only a small loss of enzyme activity (less than 8%) was observed during 72h. The value of Vmax for the dry K-carrageenan beads was found to be one half or that for free cells. It was shown that the productivities of the continuous process with wet K-carrageenan beads and dry beads at a dilution rate 0.1h-1 were 3.4g/L-h and 2.88h/L-h, respectively.

  • PDF

Improved Immobilized Enzyme Systems Using Spherical Micro Silica Sol-Gel Enzyme Beads

  • Lee, Chang-Won;Yi, Song-Se;Kim, Ju-Han;Lee, Yoon-Sik;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • Spherical micro silica sol-gel immobilized enzyme beads were prepared in an emulsion system using cyclohexanone and Triton-X 114. The beads were used for the in situ immobilization of transaminase, trypsin, and lipase. Immobilization during the sol to gel phase transition was investigated to determine the effect of the emulsifying solvents, surfactants, and mixing process on the formation of spherical micro sol-gel enzyme beads and their catalytic activity. The different combinations of sol-gel precursors affected both activity and the stability of the enzymes, which suggests that each enzyme has a unique preference for the silica gel matrix dependent upon the characteristics of the precursors. The resulting enzyme-entrapped micronsized beads were characterized and utilized for several enzyme reaction cycles. These results indicated improved stability compared to the conventional crushed form silica sol-gel immobilized enzyme systems.

Enzymatic Sorbitol Production with Zymomonas mobilis Immobilized in k-Carrageenan

  • Jang, Ki-Hyo;Jung, Sung-Je;Chang, Hyun-Soo;Chun, Uck-Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.36-42
    • /
    • 1996
  • The production of sorbitol by permeabilized cells of Zymomonas mobilis immobilized in $\kappa$-carrageenan was investigated. Cetyltrimethylammoniumbromide (CTAB) permeabilized cells were treated with glutaraldehyde prior to immobilization for cross-linking of enzymes, glucose-fructose oxidoreductase (GFOR) in cells. Rigidity of the immobilized beads was increased two-fold with 90$\%$ conversion efficiency by the additions of 40$\%$ (w/v) polyols (glycerol 25 g + propylene glycol 15 g) to 60$\%$ (w/v) distilled water containing 2.5$\%$ (w/v) $\kappa$-carrageenan as a final concentration, prior to immobilization. $\kappa$-Carrageenan beads entrapping permeabilized cells were dried to improve bead rigidity and storage stability. During s6mi-batch process for 72 h with dry beads, there was an improvement of the loss of enzyme activity (less than 10$\%$). In batch process, the kinetic results of $K_m.fructose$ value for the free cells, wet beads and dry $\kappa$-carrageenan beads were 71.7, 72.4 and 116.7 g/l, respectively. Higher productivity was obtained with two-stage continuous packed bed reactors with both wet and dry $\kappa$-carrageenan beads at 25.00 and 21.15 g/l/h, respectively, when measured at second stage.

  • PDF

Hydrogen Production from Anodized Tubular $TiO_2$ Electrode and Immobilized cross-linked P. furiosus (양극산화 $TiO_2$ 전극과 cross-linked P. furiosus 활용 물분해 수조제조)

  • Yoon, Jae-Kyung;Park, Min-Sung;Her, Ah-Young;Shim, Eun-Jung;Joo, Hyun-Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.749-752
    • /
    • 2009
  • Anodized tubular titania ($TiO_2$) electrodes (ATTEs) are prepared and used as both the photoanode and the cathode substrate in a photoelectrochemical system designed to split water into hydrogen with the assistance of an enzyme and an external bias (solar cell). In particular, the ATTE used as the cathode substrate for the immobilization of the enzyme is prepared by two methods; adsorption and crosslinking. Results show that the optimized amount of enzyme is 10.98 units for the slurried enzyme, 3.66 units for the adsorbed one and 7.32 units for the crosslinked one, and the corresponding hydrogen evolution rates are 33.04, 148.58, and 234.88 umol/hr, respectively. The immobilized enzyme, specifically the chemically crosslinked one, seems to be much superior to the slurried enzyme, due to the enhanced charge-transfer process that is caused by the lower electrical resistance between the enzyme and the ATTE. This results in a greater number of accepted electrons and a larger amount of enzymes able to deal with the electrons.

  • PDF

Immobilization of Thermomyces lanuginosus Xylanase on Aluminum Hydroxide Particles Through Adsorption: Characterization of Immobilized Enzyme

  • Jiang, Ying;Wu, Yue;Li, Huixin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2016-2023
    • /
    • 2015
  • Xylanase plays important roles in a broad range of industrial production as a biocatalyst, and its applications commonly require immobilization on supports to enhance its stability. Aluminum hydroxide, a carrier material with high surface area, has the advantages of simple and low-cost preparation and resistance to biodegradation, and can be potentially used as a proper support for xylanase immobilization. In this work, xylanase from Thermomyces lanuginosus was immobilized on two types of aluminum hydroxide particles (gibbsite and amorphous Al(OH)3) through adsorption, and the properties of the adsorbed enzymes were studied. Both particles had considerable adsorptive capacity and affinity for xylanase. Xylanase retained 75% and 64% of the original catalytic activities after adsorption to gibbsite and amorphous Al(OH)3. Both the adsorptions improved pH and thermal stability, lowered activation energy, and extended lifespan of the immobilized enzyme, as compared with the free enzyme. Xylanase adsorbed on gibbsite and amorphous Al(OH)3 retained 71% and 64% of its initial activity, respectively, after being recycled five times. These results indicated that aluminum hydroxides served as good supports for xylanase immobilization. Therefore, the adsorption of xylanase on aluminum hydroxide particles has promising potential for practical production.

Transesterification Using the Cross-Linked Enzyme Aggregate of Photobacterium lipolyticum Lipase M37

  • Han, Jin-Yee;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1159-1165
    • /
    • 2011
  • Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of $30^{\circ}C$, and an optimal pH of 9-10. It was stable up to $50^{\circ}C$ and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and n-butanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.

Continuous Production of Gluconic Acid and Sorbitol from Glucose and Fructose using Perrneabilized cells of Zymomonas mobilis (투과화된 Zymomonas mobilis 균체를 이용한 Glucose와 Fructose로 부터 Gluconic Acid와 Sorbitol의 생산)

  • 김원준;박제균;김학성
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.70-75
    • /
    • 1991
  • Continuous and simultaneous production of gluconic acid and sorbitol from glucose and fructose was carried out by using glucose-fructose oxidoreductase and glucanolactonase of Zymomonas mobilis. In order to utilize the enzymes without purification, Zymomonas mobilis was permeabilized with toluene. Optimum conditions for permeabilization and reaction kinetics of permeabilized Zymomonas mobilis were studied. In batch operation with the permeabilized cells immobilized in alginate beads, about 90% conversion was obtained within 35 h reaction. Continuous production of gluconic acid and sorbitol using the immobilized permeabilized cells was carried out. Optimum conditions for continuous operation with the imn~obilized cells were; pH 6.2 and temperature $40^{\circ}C$. Maximum productivities for gluconic acid and sorbitol were about 14.5 g/l/h and 14.8 g/l/h respectively at the dilution rate of 0.075 $h^{-1}$ when 300 g/l each of substrates was fed.

  • PDF

Recognition of substrates by membrane potential

  • Yun, Kyu-sik;Tak, Tae-moon;Kim, Jong-ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.31-35
    • /
    • 1998
  • 1. INTRODUCTION : Recognition and binding of organic substrates by biological molecules are of vital importance in biophysics and biophysical chemistry. Most studies of the application focused on the development of biosensors, which detected reaction products generated by the binding between enzymes and substrates. Other types of biosensors in which membrane proteins (e.g., nicotinic acetylcholine receptor, auxin receptor ATPase, maltose bining protein, and glutmate receptor) were utilized as a receptor function were also developed. In the previous study[1], the shifts in membrane potential, caused by the injection of substrates into a permeation cell, were measured using immobilized glucose oxidase membranes. It was suggested that the reaction product was not the origin of the potential shifts, but the changes in the charge density in the membrane due to the binding between the enzyme and the substrates generated the potential shifts. In this study, $\gamma$-globulin was immobilized (entrapped) in a poly($\gamma$-amino acid) network, and the shifts in the membrane potential caused by the injection of some amino acids were investigated.

  • PDF

Studies on the Optical Resolution of DL-Amino Acids by Aminoacylase Immobilized on Chitosan: Properties and Reactivity of Immobilized Aminoacylase (Chitosan 고정화 Aminoacylase 를 이용한 DL 아미노산의 광학적 분할에 관한 연구 : 고정화 Aminoacylase의 성질 및 반응성)

  • Lee, Sang-Hyun;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.547-552
    • /
    • 1988
  • Aminoacylase immobilized on chitosan was applied for optical resolution of DL-amino acids. Optimun pH's for hydrolysis of N-ac DL Met, N-ac DL Try and N-ac DL Phe by immobilized aminoacylase were 8.0, 7.0, and 7.5, respectively. The pH stability of immobilized aminoacylase was less than that of soluble enzyme, while there was no difference in thermostability between immibilized and soluble enzymes. The reaction rate of immobilized enzyme was maximum, when concentrations of N-ac DL Met, N-ac DL Try and N-ac DL Phe were 0.05, 0.03 and 0.05M, respectively. Continuous resolution of M/20 N-ac DL amino acids with immobilized aminoacylase packed in a column resulted in 100% hydrolysis upto space velocity $2.0\;at\;45^{\circ}C$, and the half-life of the column at space velocity 5.0 was about 25 days. The yield of L-Met, L-Try and L-Phe recovered from 2 liter of column effluent were 57%, 52% and 52%, respectively.

  • PDF