• Title/Summary/Keyword: immobilized cell bioreactor

Search Result 32, Processing Time 0.026 seconds

Characteristics of Immobilized Culture of Mentha piperita Cells for Oil Production

  • Ha, Won Ho;Gun Jo Woo;Hyong Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.132-136
    • /
    • 1996
  • To investigate the characteristics of immobilized peppermint (Mentha piperita) cells, dry cell weight (DCW), change of cell viability, and oil productivity of the immobilized cells were determined. Peppermint cells were immobilized in polyurethane (PU) foams of $5{\times}5{\times}5$ mm and cultured in a shaking flask. The maximum DCW was 2.1 mg per foam piece after 20 days of cultivation and the cell density was approximately 420 mg per flask containing 200 foams in 200 ml medium. For the first five days of cultivation, the cell viability was about 80$%$ and decreased to 70$%$ during 5 to 20 days of cultivation. The maximum oil productivity, 148 mg/l was achieved after 40 days of cultivation. The immobilized cells were also cultivated in a bioreactor, equipped with a round spiral type impeller, containing 2, 400 PU foams. The cell viability after 30 days of cultivation with chitosan as an elicitor in the bioreactor was 67$%$ and DCW was 2.0 mg per foam piece. Though the cell viability was relatively high in the bioreactor system, the oil productivity was relatively lower than that of the flask system.

  • PDF

Studies of Repeated Fed-Batch Fermentation of Cephalosporin C in an Immobilized Cell Bioreactor

  • Park, Hong-Je;Khang, Yong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.229-233
    • /
    • 1995
  • Acremonium chrysogenum was immobilized in ionotropic gel beads to develop semi-continuous production of cephalosporin C (CPC). Barium alginate beads were more stable than calcium alginate or strontium alginate beads in chemically defined media. The gel stability of Ba-alginate was further increased by cross-linking with polyethyleneimine (PEI). The presence of carboxymethyl cellulose inside Ba-alginate beads did not reduce mass transfer resistance. Ba-alginate microbeads that had little diffusion limitation increased CPC production rate 1.6 fold higher than that of normal beads. CPC fermentation with immobilized cells in Ba-alginate microbeads was performed continuously for 40 days by way of repeated fed-batch operations. Mathematical modeling was developed to describe the repeated fed-batch fermentation system. Results of the computer simulation agreed well with the experimental data, which made it possible to predict an optimal feeding rate that could maximize total CPC productions.

  • PDF

Semicontinuous Production of Red Pigment by Immobilized Cells of Bacillus sp BH-99 Using Column Bioreactor

  • Ryu, Beung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.19-22
    • /
    • 2003
  • The semicontinuous production of red pigment by immobilized cells of Bacillus sp. B H-99 was investigated in comparison with free cells. The red pigment produced highest productivity under the conditions of aeration of 0.2 mL/min and 2 mm diameter of gel beads by using 3.0% sodium alginate. Semicontinuous production by immobilized cells showed the highest productivity with replacement of fresh production medium in every 72 h for fourth fermentation cycle following the conditions of red pigment productivity.

Biodetoxification of Coumaphos Insecticide Using Immobilized Escherichia coli Expressing Organophosphorus Hydrolase Enzyme on Cell Surface

  • Mansee, Ayman H.;Chen, Wilfred;Mulchandani, Ashok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.436-440
    • /
    • 2000
  • Recently, we reported an improved technology for the degradation of organophosphate nerve agents using whole cells of genetically engineered Escherichia coli that anchored and displayed the enzyme organophosphorus hydrolase on the cell surface. In this paper we report the immobilization of these cells on highly porous sintered glass beads and the subsequent application of the immobilized cell in a continuous-flow packed bed bioreactor for the biodetoxification of a widely used insecticide, coumaphos.

  • PDF

Removal of High Strength Hydrogen Sulfide Gas using a Bioreactor Immobilized with Acidithiobacillus ferrooxidans and a Chemical Absorption Scrubber (Acidithiobacillus ferrooxidans를 고정화한 생물반응기와 흡수탑을 이용한 고농도 황화수소 제거)

  • Ryu, Hui-Uk
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.328-333
    • /
    • 2004
  • To treat a waste gas containing a high strength H2S, the two-stages microbial desulfurization process that conof a bioreactor immobilized with Acidithiobacillusferrooxidans and a chemical absorption scrubber has was proposed. After 4 times repeat of batch cultures, the immobilized bioreactor has been stabilized and the rate of iron oxidation reached 0.89 kg . $m^{-3}{\cdot}m^{-1}$ at steady state. The two-stages microbial desulfurization prowas able to be operated for a long term over 54 days. The removal efficiencies of H2S were 97-99% at a space velocity of 70 h-I and a inlet concentration of 37,000 ppmv. The maximum elimination capacity of H2S was approximately 3.3 kg S . $m^{-3}{\cdot}m^{-1}$. In the bioractor, the concentrations of the $Fe^{3+}$ and the immobilzed cell were constantly maintained during the desulfurization.

Continuous Fermentationof L-Lysine by Immobilized Corynebacterium glutamicum (Corynebacterium glutamicum 고정화균체에 의한 L-라이신 연속발효)

  • 이인선;조정일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.322-327
    • /
    • 1994
  • For the improvement of L-lysine productivity, development of the continuous fermentation system by a bioreactor assembly was attempted. Primarily, optimal conditions on the whole cell immobilization of Corynebacterium glutamicum ATCC21514 were studied and 76.2% of immobilization ratio was obtained when the cells were entrapped with 4% k-carrageenan showing 4.0kg gel strength. A bioreactor system was set up using the immobilized cells was applied for the continuous production of L-lysine. The results obtained under the optimum conditions were compared with those of the batchwise fermentation. Experimental results obtained from 14 day continuous fermentation showed 36.7% of sugar conversion to L-lysine while the productivity of L-lysine was disclosed as 4.96mg/ml mg-dry cell weight /hr which is 2.5times and 4.1 times higher than those of the batchwise fermentation by the intact cells and by the immobilized cells, respectively.

  • PDF

High Density Cell Cultivation of Escherichia coli in a Dual Hollow Fiber Bioreactor (이중실관 반응기에서 E. coli의 고농도 배양)

  • Chung, Bong-Hyun;Chang, Ho-Nam;Kim, In-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.209-212
    • /
    • 1985
  • The cell density and packing characteristics of Escherichia coli immobilized in a dual hollow fiber bioreactor consisting of outer silicone membrane for oxygen transport and three inner isotropic polypropylene hollow fibers for substrate transport were investigated. The cells have grown forming the layer like animal tissue in a nearly 100% packing density. The dry biomass density was 550g/liter of void volume for cell growth, which was the highest among the biomass densities ever reported.

  • PDF

Development of an Immobilized Adsorbent for in situ Removal of Ammonium Ion from Mammalian Cell Culture Media and its Application to a Mammalian Cell Bioreactor: I. Development of Immobilized Adsorbent System (동물세포 배양액으로부터 암모늄 이온의 동시제거를 위한 고정화 흡착제의 개발과 동물세포 배양 시스템에의 응용: I. 고정화 흡착시스템 개발)

  • 박병곤;민용원;전계택;김익환;정연호
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.404-410
    • /
    • 1998
  • Three types of adsorbents were developed by immobilizing synthetic zeolite, Philipsite-Gismonine, in alginate, cellulose acetate and dialysis membrane for the in situ removal of ammonium ion which inhibits growth and productivity of animal cells such as CHO cells producing tPA. Ammonium ion removal efficiency and cell growth promoting effect with various immobilized adsorbents were evaluated and the membrane type was selected as an optimal immobilized adsorbent. The experiments were then simulated by adding 8mM ammonium chloride and immobilized adsorbent in order to validate the removal effect under high density cell cultures. The results showed increase in maximum cell density by three times, in cell viability, and in tPA productivity by 40%. And it was found that the promoting effects were more significant in case of high ammonium ion concentration system. It was also found that the optimum addition time for immobilized adsorbents was 48 hr in the absence of ammonium chloride addition and 72 hr in the presence of ammonium chloride addition.

  • PDF

Comparative Bioreactor Studies in Terms of Oxygen Transfer between Suspended and Immobilized Fungal Systems for Cyclosporin A Fermentation (Cyclosporin A 생산을 위한 액체배양과 고정화배양의 생물반응기에서의 산소전달 비교 연구)

  • 전계택
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.211-223
    • /
    • 1994
  • In fermentations with a 4-liter stirred tank bioreactor, a better than two-fold enhancement of the gas-liquid mass transfer coefficient$(k_La)$ in the celite-immobilized fungal cultures of Tolypocladium in flatum over the parallel conventional free-cell was observed at identical biomass concentrations, despite the higher specific oxygen uptake rate of the immobilized fungi during exponential growth. As a result oxygen sufficient conditions, i. e., dissolve oxygen(D.O.) concentrations exceeding 75% air saturation, could be maintained throughout exponential growth period of the immobilized culture, in contrast to the suspended fungal culture, whose D.O. levels fell below 50% air saturation. A linear monotonic dependence of $k_La$ upon impeller agitaion rate was found for both immobilized and conventional cultivation modes over a range of 250 to 550rpm, the slope being a function of biomass concentration for the free but not for the immobilized cell system In contrasts oxygen transfer rate was a much weaker function of aeration rate up to about 2.5 vvm for both culture configurations. Above this level, aeration rate had no further effect on the mass transfer. In addition, the immobilized cultures sustained good morphological and physiological states, leading to almost two times higher cyclosporln A (CyA) productivity overt the parallel free cell system. These experiments suggest that the celite-immobilized fungal system in a stirred tank reactor has considerable promise for scaling up cyclosporin A production in terms of high-density cultivation.

  • PDF

Immobilization of Trigonopsis variabilis and Conversion of Cephalosporin C to 7$\beta$-(4-Caboxybutanamido)Cephalosporanic Acid (Trigonopsis variabilis의 고정화 및 Cephalosporin C로부터 7$\beta$-(4-Carbohybutanamido)Cephalosporanic Acid의 전환)

  • 김종균;임재윤
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.296-303
    • /
    • 1994
  • An immobilized Trigonopsis variabilis cells having an high activity of D-amino acid oxidase(DAO) was used to convert CPC into GL-7-ACA. The optimal pH of the reaction system was 8.0-8.5, and the optimal temperature was 40$\circ$C. When immobilized cell was used repeatedly in semi-batchwise reaction, the system retained 80% of the initial activity after used of 12 times for over 12 hours. The storage stability of the immobilized cell was maintained for 30 days at 4$\circ$C. The CPC concentration for the maximal reaction rate was about 30 mM and 40 mM for free and immobilized cells, respectively. Substrate inhibition of CPC concentration more than 50 mM was overcomed by 20~25% by immobilization. Pure oxygen supply into reaction system was most efficient in D-amino acid oxidase reaction. Continuous conversion to GL-7-ACA from CPC has been developed with an bioreactor system containing immobilized T variabilis cells. By opera- tion of the reactor for 5 hours, the average conversion yield of >80% and GL-7-ACA production of 40~45 mM per hour could be obtained.

  • PDF