• Title/Summary/Keyword: immobilized antibody

검색결과 85건 처리시간 0.019초

티올화 항체고정형 SPR 바이오센서를 이용한 미생물 인식 (Recognition of Microorganisms Using SPR Biosensor Immobilized with Thiolated Antibody)

  • 조용진;김남수
    • Journal of Biosystems Engineering
    • /
    • 제28권2호
    • /
    • pp.167-172
    • /
    • 2003
  • This study was performed to fabricate a batch-type SPR biosensing system using a thiolated E. coli antibody coupling, and to explore the feasibility of real-time detection of E. coii in a stagnant sample solution. In advance. “O” and “K” antigenic serotype E. coli antibodies were thiolated with sulfo-LC-SPDP and dithiothreitol, and immobilized by chemisorption in the gold surface of compact SPR sensors. When the SPR biosensor immobilized with E. coli antibody monitored a E. coli solution, it took 3 to 5 min to stabilize. The SPR biosensing system developed in this study was able to detect E. coli in the range above 10$^4$ CFU/mL at the 0.05 significant level. Also, the SPR biosensor had possibility to significantly detect E. coli in the range of 10$^2$ to 10$^4$ CFU/mL in E. coli solutions. Meanwhile, when the SPR biosensor immobilized with 5. coli antibody was cleaned with NaOH solutions, its ability to detect E. coli largely decreased due to wash-out of the immobilized antibody. In order to reuse the SPR sensor, it should be antibody-immobilized newly.

Competitive Enzyme-Linked Immunosorbent Assay for Glucose-6-Phosphate Dehydrogenase

  • Kim, Moon-Hee
    • BMB Reports
    • /
    • 제30권5호
    • /
    • pp.326-331
    • /
    • 1997
  • To construct a competitive ELISA standard curve for the detection of glucose-6-phosphate debydrogenase (G6PD), we used highly purified native G6PD (nG6PD) as both immobilized and soluble antigens and anti-G6PD serum raised against nG6PD as antibody. The polystyrene cuvettes coated with nG6PD were challenged with a mixture of a limiting amount of anti-G6PD serum and various doses of nG6PD as competitors followed by incubation with alkaline phosphatase-anti-IgG conjugate. The competitive ELISA did not exhibit the typical sigmoidal dose-response curve characteristic of competition immunoassays under the optimal concentrations of antigen and antibody. The soluble nG6PD used as competitor failed to effectively inhibit the binding of antibodies to the immobilized nG6PD. The addition of NADP, a cofactor of G6PD enzyme, to coating buffer used for immobilizing nG6PD to the cuvettes and PBS-Tween-BSA buffer for diluting competitors did not improve the inhibition of antibody binding to immobilized nG6PD by soluble n/G6PD. The addition of BSA to coating buffer did not increase inhibition, either. Surprisingly, when partially active G6PD (paG6PD), obtained by repeated freeze-thawing, was used as competitor, the antibody binding to either immobilized nG6PD or immobilized paG6PD was inhibited 49-58%. We conclude that an effective competitive ELISA system with nG6PD enzyme and anti-G6PD serum for the detection of G6PD may not be established due to the poor inhibition of antibody binding to immobilized nG6PD by soluble nG6PD under the present assay conditions and that the inhibition may be improved by using an inactivated enzyme as competitor regardless of the type of immobilized antigen used. These results imply that the immobilized nG6PD may undergo denaturation upon binding to the polystyrene cuvettes and that our anti-G6PD serum may recognize denatured enzyme better than active enzyme.

  • PDF

Microfluidic Immunoassay Platform Using Antibody-immobilized Glass Beads and Its Application for Detection of Escherichia coli O157:H7

  • Lee, Nae-Yoon;Yang, Yoon-sun;Kim, Youn-Sang;Park, Sung-su
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.479-483
    • /
    • 2006
  • We developed a microfluidic immunoassay platform for the detection of various analytes such as bacterial pathogen by packing antibody-immobilized glass beads in spatially-isolated microchambers on a microfluidic device. Primary amines of antibody were covalently conjugated to carboxyl-terminated glass beads previously treated with aminosilane followed by glutaraldehyde. Through this covalent binding, up to 905 $\mu$g immunoglobulin G (IgG) per gram of glass beads was immobilized. For application, glass beads attaching antibody specific to Escherichia coli O157:H7, a foodborne pathogen, were packed into a microfluidic device and used for the detection of the serotype. This prototype immunoassay device can be used for the simultaneous detection of multiple analytes by sequentially packing different-sized glass beads attaching different antibody in discrete microchambers on a single microfluidic device.

하이브리도마 세포배양에서 암모늄 이온의 영향 및 고정화 흡착제에 의한 암모늄 이온의 동시제거 (Ammonium Ion Effects and Its In Situ Removal by Using Immobilized Adsorbent in Hybridoma Cell Culture)

  • 정연호;이해익
    • KSBB Journal
    • /
    • 제11권3호
    • /
    • pp.329-339
    • /
    • 1996
  • The effects of ammonium ion on cell growth kinetics, monoclonal antibody productivity, and cell metabolism of hybridoma cells were investigated. The mouse-mouse hybridoma cell line VlIIH-8 producing mouse IgG2a was used as a model system. Ammonium ion showed an inhibitory effect on cell growth and monoclonal antibody production. New immobilized adsorbents were developed for the reduction of the inhibitory effect of ammonium ion. The ammonium ion selective zeolite, Phillipsite-Gismondine was entrapped in calcium alginate bead or in dialysis membrane and applied to the hybridoma cell culture system for the in situ removal of ammonium ion from culture media. The effects of ammonium the both serum supplemented and serum free media on the cell growth were studied by applying immobilized adsorbents of calcium alginate bead type. The results demonstrated a substantial enhancement in cell growth. Applying immobilized adsorbents of dialysis membrane type to serum supplemented media also resulted in the stimulation of cell growth, cell viability and monoclonal antibody production.

  • PDF

항체가 건조상태로 고정된 면역진단키트의 안정화와 Shelf-Life 결정 (Stabilization of Dry Immuno-Diagnostic Kit with Immobilized Antibody and Determination of Its Shelf-Life)

  • 이창우;조정환;육순학;권오협;박영남;박세환
    • KSBB Journal
    • /
    • 제13권5호
    • /
    • pp.502-510
    • /
    • 1998
  • Stabilization of antibody, which is specific to Salmonella typhimurium antigens, present in dry states on membranes was accomplished, and its shelf-life, i.e., duration for maintaining minimum 90% of the initial activity, under optimal conditions was determined. To prepare two major components of an immuno-strip, the antibody was not only immobilized on nitrocellulose membrane surfaces but also placed within the pores of glass fiber membrane after conjugating it with old colloids as signal generator. Among potential stabilizers of the immuno-components, a disaccharide, trehalose, showed a significant protection effect of immunoglobulin structure from thermal energy. Optimal concentrations of trehalose for the respective component were significantly different (8-fold higher for the antibody-gold conjugate than for the immobilized antibody), which probably resulted from distinct densities and configurations of antibody present on the membranes. An additional requirement for the gold conjugate was freeze-drying of this substance such that the conjugate can be readily resolubilized upon contact with aqueous medium. By using the components prepared under optimal conditions, immuno-strips were constructed and exposed to thermal energy. Signals with less than 10% decrease in the intensity were maintained for approximately 21 days at 60$^{\circ}C$. Compared to previous reports, this result represented a 2-year shelf-life at room temperature. it was, however, two times longer if determined from thermal acceleration tests based on the theory of inactivation rate of protein. Such discrepancy between the two estimates could be mainly attributed to errors in accurately controlling temperatures and also to changes in the physical properties of membranes due to a high thermal energy.

  • PDF

Effects of high Cell Density on growth-Associated Monoclonal Antibody Production by Hybridoma T0405 Cells Immobilized in Macroporous Cellulose carriers

  • Hideki Mochoda;Wang, Pi-Chao;Fr Jr. Nayve;Ryuji Sato;Minoru Harige;Nakao Nomura;Masatoshi Matsumura
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권2호
    • /
    • pp.110-117
    • /
    • 2000
  • Relationship between monoclonal antibody (MAb) productivity and growth rate, and effects of high cell density on MAb production rate increased with increasing specifis growth rate in both suspended and immobilized continuous cultures indicate a positively growth-associated relationship between MAb productivity and growth rate. moreover, the specific production rate was higher in the immobilized cell culture than that in suspended one at all dilution rates. In order to clarify these phenomana, MAb mPNA experession and cell cycle distribution were investigated in bacth cultures with immobilized cells and suspended cells. RT-PCR was used for observation of MAb mRNA expression and a two-color bromodeoxyuridine (BrdU)/propidium iodide (PI) flow cytometry method for determination of cell cycle distribution. The results revealed that MAb nRNA expression until dead phase, which was longer than in suspended cell. The cell cycle distribution patterns were observed almost the same for both immobilized and suspended cells. Such results may imply that a high cell density state has positive influence on the mRNA expression and on growth-associated Mab productivity of T0405 cells.

  • PDF

Quantitative Assay of Hepatitis B Surface Antigen by Using Surface Plasmon Resonance Biosensor

  • Hwang, Sang-Yoon;Yoo, Chang-Hoon;Jeon, Jun-Yeoung;Choi, Sung-Chul;Lee, Eun-Kyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권4호
    • /
    • pp.309-314
    • /
    • 2005
  • We performed a basic experiment for the rapid, on-line, real-time measurement of hepatitis B surface antigen using a surface plasmon resonance biosensor. We immobilized anti­HBsAg (hepatitis B surface antigen) polyclonal antibody, as a ligand, to the dextran layer on a CM5 chip surface that had previously been activated by N-hydroxysuccinimide. A sample solution containing HBsAg was fed through a microfluidic channel, and the reflecting angle change due to the mass increase from the binding was detected. The binding characteristics between HBsAg and its polyclonal antibody followed the typical monolayer adsorption isotherm. When the entire immobilized antibody had interacted, no additional, non-specific binding occurred, suggesting the immunoreaction was very specific. The bound antigen per unit mass of the antibody was independent of the immobilized ligand density. No significant steric hindrance was observed at an immobilization density of approximately $17.6 ng/mm^2$. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the ligand was linear up to ca. $40{\mu}g$/mL. This linearity was much higher than that of the ELISA method. It appeared the anti­gen-antibody binding increased as the immobilized ligand density increased. In summary, this study showed the potential of this SPR biosensor-based method as a rapid, simple and multi­sample on-line assay. Once properly validated, it may serve as a more efficient method for HBsAg quantification for replacing the ELISA.

Surface plasmon resonance 바이오센서를 이용한 재조합 B형 간염 표면항원의 정량분석 (Quantitative Assay of Recombinant Hepatitis B Surface Antigen by Using Surface Plasmon Resonance Biosensor)

  • 이은규;안상점;유창훈;류강;전준영;이현익;최성철;이영식
    • KSBB Journal
    • /
    • 제17권1호
    • /
    • pp.20-25
    • /
    • 2002
  • We performed a basic experiment for rapid, on-line, real-time measurement of HBsAg by using a surface plasmon resonance biosensor to quantify the recognition and interaction of biomolecules. We immobilized the anti-HBsAg polyclonal antibody to the dextran layer on a CM5 chip surface which was pre-activated by N-hydroxysuccinimide for amine coupling. The binding of the HBsAg to the immobilized antibody was measured by the mass increase detected by the change in the SPR signal. The binding characteristics between HBsAg and its antibody followed typical monolayer adsorption isotherm. When the entire immobilized antibody was interacted, there was no additional, non-specific binding observed, which suggested the biointeraction was very specific as expected and independent of the ligand density. No significant steric hindrance was observed at 17.6 nm/$mm^2$ immobilization density. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the chip surface was linear up to ca. $40\mu\textrm{g}$/mL, which is much wider than that of the ELISA method. It appeared the antigen-antibody binding was increased as the immobilized ligand density increased, but verification is warranted. This study showed the potential of this biosensor-based method as a rapid, simple, multi-sample, on-line assay. Once properly validated, it can serve as a more powerful method for HBsAg quantification replacing the current ELISA method.

고정화법을 달리하여 제조한 압전류적 항체 센서에 의한 Salmonella spp.의 신속 검출 (Rapid Detection of Salmonella spp. by Antibody-Immobilized Piezoelectric Crystal Biosensor)

  • 박인선;김우연;김남수
    • 한국식품위생안전성학회지
    • /
    • 제13권3호
    • /
    • pp.206-212
    • /
    • 1998
  • Salmonella spp.의 신속한 검출을 위하여 엷은 박막형태의 수정결정을 사용하는 압전류적(piesoelectric) 항체센서 시스템을 개발하고 증류수, 완충용액, 식염용액 등의 여러 매질 중에서 보여주는 진동 특성을 검토하였다. Salmonella spp. 균 구조항원(Common structural antigen)에 대한 항체를 수정결정에 PEI pre-coating, BSA 가교화, 3-APTES silanizaition, protein A와 DTBP thiolation의 5가지 방법에 의해 고정화한 후 항체 센서의 안정성을 살펴보았다. Salmonella 균을 주입하였을 때 Salmonella 균과 수정 결정에 고정화한 항체와의 결함반응에 의해 수정결정의 질량증가와 이에 따른 진동수 감소가 나타났다. 고정화방법 중 protein A와 DTBP를 이용하여 고정화하는 방법이 센서반응을 가장 안정적이고 재현성 있게 나타내줌을 알 수 있었다. $7.45{\times}10^{7}\;CFU/ml$의 Salmonella 균을 반응 cell 내에 주입하였을 때 protein A를 이용한 고정화의 경우 80Hz, DTBP를 이용한 고정화의 경우 283 Hz의 진동수 감소가 나타났으며, 압전류적 항체센서를 이용할 경우 40분 이내에 Salmonella spp.의 검출이 가능하였다.

  • PDF

Site-directed Immobilization of Antibody onto Solid Surfaces for the Construction of Immunochip

  • Paek, Se-Hwan;Cho, Il-Hoon;Paek, Eui-Hwan;Lee, Haewon;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권2호
    • /
    • pp.112-117
    • /
    • 2004
  • The performance of an immuno-analytical system can be assessed in terms of its analytical sensitivity, i.e., the detection limit of an analyte, which is determined by the amount of analyte molecules bound to the capture antibody that has been immobilized onto a solid surface. To increase the number of the binding complexes, we have investigated a site-directed immobilization of an antibody that has the ability to resolve a current problem associated with a random arrangement of the insolubilized immunoglobulin. The binding molecules were chemically reduced to produce thiol groups that were limited at the hinge region, and then, the reduced products were coupled to biotin. This biotinylated antibody was bound to a streptavidin-coated surface via the streptavidin-biotin reaction. This method can control the orientation of the antibody molecules present on a solid surface and also can significantly reduce the possibility of steric hindrance in the antigen-antibody reactions. In a two-site immunoassay, the introduction of the site-directly immobilized antibody as the capture enhanced the sensitivity of analyte detection approximately 10 times compared to that of the antibody randomly coupled to biotin. Such a novel approach would offer a protocol of antibody immobilization in order for the possibility of constructing a high performance immunochip.