최근 가상 아바타를 이용하여 가창과 안무를 표현하는 다양한 가상 아바타 음악 콘텐츠가 제작되고 있으며, 가상 아티스트들의 인기가 높아짐에 따라 오프라인에서도 가상 아바타 콘서트를 하는 사례도 등장하고 있다. 하지만 가상 아바타가 악기를 연주하는 밴드 콘텐츠의 제작 사례는 찾아보기 어려우며, 전면의 대형 스크린을 사용하는 오프라인 가상 아바타 콘서트는 가상 현실 특유의 환상적인 연출과 높은 자유도를 활용하기 어렵다는 단점이 있다. 본 논문은 이러한 제한점에 영감을 얻어, 가상 밴드 아이돌 Verse'day의 가상 아바타 밴드 콘텐츠 제작과 몰입형 인터랙티브 공연 제작 사례를 소개한다. 먼저, 본 논문에서는 모션 캡쳐 시스템과 실시간 엔진을 활용해 밴드 연주 애니메이션과 뮤직비디오를 제작한 과정을 소개한다. 이어서, 오프라인 콘서트에서 프로젝션 매핑과 실시간 상호작용 응원봉을 사용해 몰입형 인터랙티브 가상 아바타 공연을 제작한 사례를 소개한다. 마지막으로, 본 논문의 제작 사례를 바탕으로 향후 가상 아바타 음악 콘텐츠 제작을 위한 연구 방향을 제언하였다. 우리는 본 제작 사례가 향후 다양한 가상 아바타 음악 콘텐츠 제작과, 몰입형 인터랙티브 오프라인 가상 아바타 콘서트 제작에 영감을 줄 수 있을 것으로 기대한다.
International Journal of Internet, Broadcasting and Communication
/
제13권1호
/
pp.161-167
/
2021
This paper proposes a new personalized HRTF estimation method which is based on a deep neural network (DNN) model and improved elevation reproduction using a notch filter. In the previous study, a DNN model was proposed that estimates the magnitude of HRTF by using anthropometric measurements [1]. However, since this method uses zero-phase without estimating the phase, it causes the internalization (i.e., the inside-the-head localization) of sound when listening the spatial sound. We devise a method to estimate both the magnitude and phase of HRTF based on the DNN model. Personalized HRIR was estimated using the anthropometric measurements including detailed data of the head, torso, shoulders and ears as inputs for the DNN model. After that, the estimated HRIR was filtered with an appropriate notch filter to improve elevation reproduction. In order to evaluate the performance, both of the objective and subjective evaluations are conducted. For the objective evaluation, the root mean square error (RMSE) and the log spectral distance (LSD) between the reference HRTF and the estimated HRTF are measured. For subjective evaluation, the MUSHRA test and preference test are conducted. As a result, the proposed method can make listeners experience more immersive audio than the previous methods.
최근 MPEG-I 그룹에서는 표준화가 진행중인 몰입형 미디어(Immersive Media)에 대한 압축 성능 탐색이 이루어지고 있다. 몰입형 비디오는 다수의 시점 영상과 깊이 맵을 통한 깊이 맵 기반 이미지 렌더링(DIBR)을 바탕으로 제한적 6DoF 을 제공하고자 하는 기술이다. 현재 MIV(Model for Immersive Video) 기술에서는 바탕 시점(Basic View)과 각 시점의 고유한 영상 정보를 패치 단위로 모아둔 추가 시점(Additional View)으로 처리하는 모델을 채택하고 있다. 그 중에서 추가 시점은 일반적인 영상과는 달리 시간적/공간적 상관성이 떨어지는 분절적인 형태로 이루어져 있어 비디오 인코더에 대해 최적화가 되어 있지 않으며, 처리 방법의 특성에 따라 자기 유사적인 형태를 지니게 된다. 따라서 MIV 에서 스크린 콘텐츠 코딩 성능과 함께 화면 내 블록 카피(IBC: intra block copy) 기술에 대한 성능을 분석 결과를 제시한다. IBC 미적용 대비 최대 7.56%의 Y-PSNR BD-rate 감소가 가능함을 확인하였으며, 영상의 특성에 따라 IBC 의 선택 비율을 확인하여 추가 시점의 효율적인 압축 형태를 고찰한다.
VR(Virtual Reality), AR(Augmented Reality) 컨텐츠의 획득과 소비가 가능한 사용자 디바이스들이 널리 보급되고 있는 가운데, MPEG(Moving Picture Experts Group)에서는 몰입형(immersive) 미디어의 압축과 포맷, 전송에 대한 표준 제정 작업이 활발히 진행 중이다. 본 논문에서는 몰입형 미디어 표준 프로젝트인 MPEG-I와 그 부속 표준의 하나이며 전 방향 미디어 포맷에 대한 표준인 OMAF 표준의 기술 전반과 표준 동향에 대해 소개하고자 한다.
본고에서는 버추얼 프로덕션(이후 VP로 표기)의 국내 도입 이후 현주소와 소비자의 니즈에 대응하기 위해 (주)비브스튜디오스에서 개발 중인 VP 통합제어 솔루션 'VIT'를 소개하고, 자체 스튜디오에서 사전 사업화를 진행하며 영상 콘텐츠를 제작한 사례를 통해 국산 솔루션의 가능성을 설명하고자 한다.
최근 MPEG-I (Immersive) 그룹에서는 몰입형 비디오(Immersive Video)에 대한 표준화 프로젝트를 통해 압축 성능 탐색을 진행하고 있다. MIV(MPEG Immersive Video) 표준 기술은 다수의 시점 영상과 깊이 맵을 통한 깊이 맵 기반 이미지 렌더링(DIBR)을 바탕으로 제한적인 6DoF을 제공하고자 하는 기술이다. 현재 MIV에서는 바탕 시점(Basic View)과 각 시점의 고유한 영상 정보를 패치 단위로 모아둔 추가 시점(Additional View)으로 처리하는 모델을 채택하고 있다. MIV에서 생성된 아틀라스는 포함되는 시점의 성격에 따라 다른 영상의 특성을 나타내어 비디오 코덱의 압축 효율에 대한 고찰이 필요하다. 따라서 본 논문에서는 다양한 시점과 패치들이 반복되는 패턴에 착안하여 화면 내 블록 카피(IBC: intra block copy) 등의 압축 기법이 포함된 스크린 콘텐츠 코딩 툴에 대한 성능 비교 분석을 진행하여 복원 영상에서 최대 -15.74% Peak Signal-to-Noise Ratio (PSNR) 관점에서의 부호화 성능 향상을 제공하였다.
현재 대부분의 객체 탐지 알고리즘은 RGB 영상을 기반으로 연구되고 있다. 하지만 RGB 카메라는 물체에서 반사되는 빛을 받아들여 영상을 생성하기 때문에, 물체에서 나오는 빛이 적거나 산란이 되는 야간 또는 안개가 끼는 환경에서는 물체의 정보가 잘 표현되는 영상 취득이 어려워 객체 탐지의 정확도가 떨어진다. 그에 반해 IR(열 적외선, Infra-Red) 영상은 열 센서로 이미지를 생성하기 때문에 RGB 영상에 비해 정확한 물체의 정보를 표현할 수 있다. 따라서 본 논문에서는 이러한 이미지 특성 차이에 따른 객체 탐지 성능을 비교하고자 하며, RGB와 IR 영상의 압축률에 따른 객체 탐지를 수행하고, 결과를 비교 분석 하고자 한다. 실험에 사용된 영상은 첨단운전자 보조 시스템(ADAS) 연구용 데이터 세트인 Free FLIR Thermal 데이터 세트 중 야간에 촬영된 RGB 영상과 IR 영상을 사용하였으며, 기존 RGB 영상 기반으로 사전 학습된 신경망과 FLIR Thermal 데이터 세트 내 RGB 영상과 IR 영상을 일부 골라 재학습한 신경망을 이용하여 객체 탐지를 수행하였다. 실험 결과 RGB 기반으로 사전 학습된 신경망과 재학습한 신경망 모두 IR 영상 기반 객체 탐지 성능이 RGB 영상 기반 성능보다 월등한 것을 확인할 수 있었다.
MPEG-I Visual group is actively working on enhancing immersive experiences with up to six degree of freedom (6DoF). In virtual space of 3DoF+, which is defined as an extension of 360 video with limited changes of the view position in a sitting position, looking at the scene from another viewpoint (another position in space) requires rendering additional viewpoints using multiple videos taken at the different locations at the same time. In the MPEG-I Visual workgroup, methods of efficient coding and transmission of 3DoF+ video are being studied, and they released Test Model for Immersive Media (TMIV) recently. This paper presents the enhanced clustering method which can pack the patches into atlas efficiently in TMIV. The experimental results show that the proposed method achieves significant BD-rate reduction in terms of various end-to-end evaluation methods.
As the market demand for immersive media increases, an efficient streaming method is required in consideration of network conditions while maintaining the user's immersive experience. Accordingly, transmitting a viewport with relatively high-quality, such as tile-based streaming, is mainly used. But there still remains a lot of technical challenges, such as quickly providing a new viewport in high-quality according to the gaze. To solve the aforementioned problem, in this paper, we propose a method of configuring and transmitting a supplemental tile set through the predicted direction, and a range of stable utilization of the transmitted supplemental tile set.
International Journal of Internet, Broadcasting and Communication
/
제15권3호
/
pp.1-7
/
2023
Since the first outbreak of COVID-19 in 2019, it has caused a huge blow to the restaurant industry. However, as social distancing was lifted as of April 2022, the restaurant industry gradually recovered, and as a result, interest in restaurant start-ups increased. Therefore, in this paper, big data analysis was conducted by selecting "restaurant start-up" as a key keyword through social media big data analysis using Textom and then conducting word frequency and CONCOR analysis. The collection period of keywords was selected from May 1, 2022 to May 23, 2023, after the lifting of social distancing due to COVID-19, and based on the analysis, the development of a restaurant start-up consulting chatbot service is proposed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.