• 제목/요약/키워드: immersion liquid

검색결과 105건 처리시간 0.029초

반죽의 냉동과 저장 조건에 따른 빵의 품질 특성 (Quality Characteristics of Wheat Flour Breads with the Doughs Frozen at the Different Freezing and Storage Conditions)

  • 고봉경
    • 한국식품과학회지
    • /
    • 제34권3호
    • /
    • pp.413-418
    • /
    • 2002
  • 제빵에 이용 할 반죽을 발효하거나 발효하지 않은 상태로 다섯 가지의 다른 냉동 및 저장 환경에서 냉동하고 일주일간 저장하여 해동 한 후 제조된 빵의 품질을 비교하였다. 냉동속도가 빠르더라도 발효한 후 냉동된 반죽은 빵의 부피가 감소하였으며 이러한 문제점은 침지식 냉동 방식에서도 해결되지 않았다. $-70^{\circ}C$의 초저온 냉동은 $-20^{\circ}C$ 침지식 냉동고에 비하여 냉동 온도가 매우 낮으나, 냉동 속도도 느리고 해동 후 재 발효하여도 빵의 부피가 작아서 효과적인 냉동 방법이 되지 못하였다. 반면 냉동 속도는 느리지만 $-20^{\circ}C$ 공기 송풍식 냉동고가 $-70^{\circ}C$ 공시 송풍식 냉동고보다 냉동에 따른 장해가 적어서 반죽의 발효가 잘되었다. 동일한 온도일 때는 침지식 냉동이 더욱 효과적이었으며 침지식 가운데도 온도가 더 높은 $-10^{\circ}C$ 냉동이 가장 효과적이어서 발효하지 않고 냉동하여 재 발효 할 경우 대조구보다도 오히려 반죽의 발효가 잘되어 빵의 부피가 더 컸다. 따라서 본 연구에 이용한 방법 가운데 $-70^{\circ}C$ 공기 송풍식 냉동고에서 냉동, 저장하는 것이 가장 비효율적이며 침지식 냉동방법들이 냉동 온도가 높더라도 오히려 해동 후 발효 장해가 적어서 효율적이었다. 위의 실험 결과를 종합하였을 때, 냉동 전에 반죽을 발효하지 않고 $-10^{\circ}C$ 침지식 냉동고에서 냉동하여 저장하거나, $-20^{\circ}C$ 침지식 냉동고에서 초기에 냉동을 하고, $-20^{\circ}C$ air freezer에 저장하는 방법이 가장 효과적이었다.

석탄회를 재활용한 지오폴리머 침지실험에 관한 연구 (Study on the immersion test of geopolymers made by recycling of coal ash)

  • ;강승구
    • 한국결정성장학회지
    • /
    • 제28권5호
    • /
    • pp.199-205
    • /
    • 2018
  • IGCC(integrated gasification combined cycle) 발전소에서 발생된 석탄회로부터 발포 및 비발포 지오폴리머를 제조하고, 그 내수성을 평가하였다. 시편을 30일간 물에 침지하여 미세구조 변화 및 침지액의 알칼리도 변화를 측정함에 있어 지오폴리머 발포여부, 상온재령 조건, 그리고 침지시간을 변수로 실험하였다. Si-sludge를 0.1 wt% 첨가한 지오폴리머에는 직경이 1~3 mm인 기공들이 발생하여 우수한 발포성을 보였고, calcium-silicate-hydrate 결정상이 생성되었다. 침지실험에서 침지액의 pH가 시간에 따라 증가하는 것은 경화제로 사용된 알칼리 활성화제 중에서 미반응된 것이 물에 녹아나왔기 때문이다. 침지액의 pH 변화로부터 발포된 시편이 제조과정에서 비발포 시편에 비해 지오폴리머 반응이 더 빨리 완결됨을 알 수 있었다. 본 연구를 통하여 IGCC 석탄회를 재활용한 발포 및 비발포 지오폴리머를 성공적으로 제조할 수 있었으며, 향후 내수성이 필요한 분야에 IGCC 석탄회 기반 지오폴리머를 적용하기 위해 필수적인 상온재령 시간, 발포/비발포 유무, 침지 시간 등에 대한 공정 데이터들을 확보하였다.

SI 機關용 電子制御 燃料噴射노즐의 過渡的 現象 (The Transient Phenomena of Fuel Injection Nozzle for Electronic Control SI Engines)

  • 김신구;김덕줄;이충원
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.308-318
    • /
    • 1988
  • 본 연구에서는 가압된 액체를 가류실에 접선방향으로 도입하게 함으로써 선회운동에 의하여 미립화를 시키도록 스크류형의 선회분사 노즐을 설계제작하였다.

Kinetic Characterization of Swelling of Liquid Crystalline Phases of Glyceryl Monooleate

  • Lee, Jae-Hwi;Choi, Sung-Up;Yoon, Mi-Kyeong;Choi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.880-885
    • /
    • 2003
  • Research in this paper focuses on the kinetic evaluation of swelling of the liquid crystalline phases of glyceryl monooleate (GMO). Swelling of the lamellar and cubic liquid crystalline phases of GMO was studied using two in vitro methods, a total immersion method and a Franz cell method. The swelling of the lamellar phase and GMO having 0 %w/w initial water content was temperature dependent. The swelling ratio was greater at $20^{\circ}^C than 37^{\circ}^C$ . The water uptake increased dramatically with decreasing initial water content of the liquid crystalline phases. The swelling rates obtained using the Franz cell method with a moist nylon membrane to mimic buccal drug delivery situation were slower than the total immersion method. The swelling was studied by employing first-order and second-order swelling kinetics. The swelling of the liquid crystalline phases of GMO could be described by second-order swelling kinetics. The initial stage of the swelling (t < 4 h) followed the square root of time relationship, indicating that this model is also suitable for describing the water uptake by the liquid crystalline matrices. These results obtained from the current study demonstrate that the swelling strongly depends on temperature, the initial water content of the liquid crystalline phases and the methodology employed for measuring the swelling of GMO.

Cryogenic cooling system for HTS cable

  • Yoshida, Shigeru
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권2호
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

가공용 알루미늄 합금의 극저온 특성 (An Extremely Low Temperature Properties of Wrought Aluminum Alloys)

  • 정찬회;김순국;이준희;이해우;장창우
    • 한국재료학회지
    • /
    • 제17권4호
    • /
    • pp.192-197
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen on the behavior of aluminum alloys used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing immersion time in the liquid nitrogen, the elongation of AI 5083 alloy at cryogenic temperature decreased because of non-uniform fracture of precipitates on the grain boundary, and the serration also occurred because of discontinuous slip due to rapid decreasing of the specific heat. The mechanical properties of AI 6061 alloy at cryogenic temperature were characterized by uniformed yield strength, tensile strength and elongation regardless of the immersion time in the liquid nitrogen. These mechanical properties of aluminum alloys at cryogenic temperature were interpreted by the strength of grain boundary and the slip deformation behavior.

다단 혼 형태의 초음파 장비를 이용한 초음파 화학적 효과 연구 (Sonochemical Effects using Multi-stepped Ultrasonic Horn)

  • 최종복;이성은;손영규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권4호
    • /
    • pp.58-66
    • /
    • 2020
  • Since the typical horn-type ultrasonic equipment induces a reaction at the probe tip, the sonochemical reaction has a limitation that it occurs only in a specific area. As one of the ways to overcome this limitation, an ultrasonic device with multi-stepped horn equipped with several oscillators has been developed. The objective of this study was to investigate the sonochemical effects induced by acoustic cavitation system in 20 kHz multi-stepped ultrasonic horn using calorimetry, KI dosimetry and the luminol test. The sonochemical effects of multi-stepped ultrasonic horn were compared with that of the typical horn-type 20 kHz ultrasonic device. The effect of immersion depth and power on the sonochemical reaction was investigated in the ultrasonic system with multi-stepped ultrasonic horn. Higher calorimetric energy was obtained at higher immersion depth and power conditions. Sonochemical effects increased significantly when using the high immersion depth and input power. However, as the input power increased, the cavitation reaction zone concentrated around the ultrasonic horn. Additionally, the experiments to examine the effect of liquid temperature was conducted. The smaller sonochemical reaction was obtained for the higher liquid temperature. The effect on temperature seems to be closely related to liquid conditions such as viscosity and vapor pressure of water.

Alocasia amazonica의 생물반응기 배양에서 배지 공급 방식이 식물체의 생장과 잎조직 및 기공의 특성에 미치는 영향 (Plantlet Growth, and Leaf and Stomatal Characteristics of Alocasia amazonicaas Affected by Medium Supply Methods in Bioreactor Culture)

  • 조은아;한은주;백기엽
    • Journal of Plant Biotechnology
    • /
    • 제33권2호
    • /
    • pp.117-122
    • /
    • 2006
  • Comparative studies on medium supply in bioreactors (raft, immersion and ebb and flood) have revealed that multiplication and growth of Alocasia Amazonica were greatest in the raft system, while lowest in ebb and flood system. In the raft system, the basal part of the shoots was continuously in contact with medium, which enabled a constant uptake of nutrients as well as aeration to the explants. The number and the size of leaf stomata were higher in the raft system compared with immersion and ebb&flood system. In the immersion system, plantlets were deformed and epidermal cells in leaves were irregular with a large intercellular space. The results suggested that the medium supply should be controlled properly to maintain normal and healthy plantlets during liquid cultures in bioreactors Which affects morphology and physiology Of the plantlets.

산업용 백금저항온도센서의 결선방식에 따른 측정불확도 평가방법 (Uncertainty assessment of industrial platinum resistance thermometers for different lead-wire connection methods)

  • 김용규;감기술;양인석
    • 센서학회지
    • /
    • 제18권4호
    • /
    • pp.322-326
    • /
    • 2009
  • To estimate the measurement uncertainty for industrial platinum resistance thermometers(IPRTs) made with 3-wire connection, the immersion temperature profile was investigated using a liquid bath. Two types of IPRTs having lead wires made of silver and nickel were constructed and the immersion profiles were measured at temperatures from -50 $^{\circ}C$ to 250 $^{\circ}C$ using 3-wire and 4-wire method. As immersion depth and temperature increased, the resistances measured by 3-wire method increased linearly but not for 4-wire method. To calibrate a 3-wire IPRT, the immersion effect must be accounted for. We propose a linear equation to assess correctly the measurement uncertainty.

고점성 바이오 디젤유의 분무미립화에 관한 연구 (A Study on the Atomization of a Highly Viscous Biodiesel Oil)

  • 주은선;정석용;강대운;김종천
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.146-153
    • /
    • 1997
  • An experiment was conducted to figure out the atomization characteristics of a highly viscous biodiesel fuel with rice-barn oil applying and ultrasonic energy into it. A spray simulator for the droplet atomization, an ultrasonic system, and six different nozzles(3 pintle-type nozzles and 3 single hole-type nozzles) were made. To investigate effects of ultrasonic energy in a highly viscous liquid fuel, an immersion liquid method was used as a measurement method on droplet size distributions. It was found that the ultrasonic energy was effective for the atomization improvement of the rice-bran oil as a highly viscous biodiesel fuel and the factor나 such as the nozzle opening pressure, pin-edge angles, hole diameters, and collection distances affected the atomization of spray droplets.

  • PDF