• Title/Summary/Keyword: immersed tunnel

Search Result 44, Processing Time 0.024 seconds

An Examining and Analyzing Study on the Fire Resistance Design for Immersed Tunnels (침매터널 내화설계에 관한 조사 분석적 연구)

  • Lee, Young-Jae;Kim, Heung-Youl;Shin, Hyun-Jun;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.507-512
    • /
    • 2008
  • Recently, Busan-Geoje fixed Link Immersed Tunnel and the Tokyo Port Waterway 2 Submarine Tunnel have been constructing. Furthermore it was mentioned to construct an immersed tunnel from Korea to Japan. As a result, it is expected that the demand to use the immersed tunnel will be increased. However, if a fire occurs in the immersed tunnels, it will damage tunnel elements and not save human lives more seriously than normal tunnels on the ground because of the absence of exits as well as closing structure of the immersed tunnels. In fact, the fire accident in the Eurotunnel which connects between France and the Unite Kingdom through the immersed tunnel had occurred twice in 1996 and 2008, and the inner surface of the tunnel got damaged such as concrete popout and structural damage. As a result, not only economic injury but enormous expense to repair and reinforce the tunnel were derived because of the suspension of traffic after the fire happened. Now, from the examining and analyzing study on the fire resistance of immersed tunnels in developed countries and Busan-Geoje fixed Link Immersed Tunnel, we suggest the establishment method of fire resistance to insure the fire safety of immersed tunnel.

  • PDF

DESIGN OF THE CEMENT DEEP MIXING FOUNDATION FOR THE BUSAN-GEOJE IMMERSED TUNNEL

  • Kim, Yong-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.96-103
    • /
    • 2010
  • The GK immersed tunnel as a part of the Busan-Geoje Fixed Link Project, introduced the immersed tunnel method into Korea for the first time. This challeging project to be completed in 2010 will open a new era to link oceans of the world with optimized design and safety for future use. The immersed tunnel method would possibly suitable for use in construction of a sub sea tunnel from Korea to Japan and from Korea to China that could potentially be built in the distant future. We hope the techniques learned from the Busan-Geoje Fixed Link Project can be applied to further projects in the near future.

  • PDF

Design of the Busan-Geoje Fixed Links Immersed tunnel (기획특집 - 거가대교 침매터널의 설계)

  • Lee, Jung-Sang
    • Journal of the Korean Professional Engineers Association
    • /
    • v.43 no.2
    • /
    • pp.30-33
    • /
    • 2010
  • Immersed tunnel had been a rather new term in Korea before Busan-Geoje fixed link project was started and became known through the media. Although Korean is unfamiliar with the immersed tunnel, this construction method has a long history in the world. Busan-Geoje Fixed Link immersed tunnel consist of 18 elements and each element is approximately 180m long. These tunnel elements are prefabricated of reinforced concrete in a temporary dry dock and are towed to the site and lowered into final position in a dredged trench and are placed on a screeded gravel bed directly without temporary support.

  • PDF

Construction of the Busan-Geoje Fixed Links Immersed tunnel (기획특집 - 거가대교 침매터널의 시공)

  • Cho, Bong-Hyun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.43 no.2
    • /
    • pp.34-38
    • /
    • 2010
  • The Busan-Geoje Fixed Link is an 8.2 km long motorway connecting Busan to the island of Geoje where the Korean big two shipbuilding yard locate on. This motorway includes a 3,300m immersed tunnel which is one of the longest immersed tunnel in the world and two cablestayed bridges each of 2km in length. The site locates in a exposed offshore, which is subjected to strong winds, large swell waves and strong tidal currents. These conditions together with the tunnel being at a deepest immersed tunnel ever built and the foundation condition is consisting of a very soft, normally to slightly over consolidated marine clay, makes the project unique and one of the most challenging immersed tunnels ever built.

  • PDF

Numerical Experiments of Dynamic Wave Pressure Acting on the Immersed Tunnel on Seabed Foundation (해저지반 상부에 설치된 침매터널에 작용하는 동수압에 관한 수치실험)

  • Hur Dong Soo;Kim Chang Hoon;Yeom Gyeong Seon;Kim Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.294-306
    • /
    • 2005
  • Most immersed tunnels investigated have been investigated based on the engineer's experience with design and construction. From engineering point of view, it is very important to understand the wave interaction with the seabed and immersed tunnel, since the stability of an immersed tunnel depends largely on the behavior of the seabed foundation. In this study, for the first stage research to find out the mechanism of the wave interaction with the seabed and immersed tunnel, the benchmarking method called as direct numerical simulation (DNS) was employed to analyze comprehensively the wave-induced pore water pressures, vorticity and flows in seabed or inside rubble stone around the immersed tunnel. The immersed tunnel is modeled based on Busan-Geoje fixed link project in Korea, which is now on the stage of planning. Moreover, the nonlinear water wave interaction with an immersed tunnel/its seabed foundation was thoroughly examined with regard to the stabilities of the immersed tunnel subjected to various water wave conditions, median grain size and so forth.

Suggestion of the Prediction Method about Upheaval Shape and Volume for SCP Construction (SCP 시공에 따른 융기토 형상과 체적의 예측기법 제안)

  • Jeong, Gyeong-Hwan;Park, Chan-Woo;Shin, Min-Sik;Hideo-Tsuboi;Mitsuo-Nozu;Lee, Sang-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.497-508
    • /
    • 2006
  • Busan-Geoje Fixed Link, total length of 8.2km, consist of bridge and immersed tunnel connects Gaduk island, Busan and Jangmokmyon, Geoje, in extension of the $58^{th}$ local road. The immersed tunnel, a total length of 3.7km within Busan-Geoje Fixed Link, was planed first timein domestic but the deep water depth like maximum of 50m with offshore conditions and the 35m thickness of soft clay layer under the immersed tunnel, migth be some problems like the differential settlement during or after works. So it was designed to install SCP(Sand Compaction Pile) column partially to improve the soft ground under the immersed tunnel. In this paper, it is presented to illustrate the design including ground condition under the immersed tunnel, improvement design, upheaval shape and ratio due to SCP test construction.

  • PDF

Design and construction of the GK immersed tunnel of Busan-Geoje Fixed Link Project (국내 최장 GK 침매터널의 설계 및 시공)

  • Kim, Yong-Il;Kim, Woong-Ku;Kim, Je-Chun;Lee, Jung-Sang;Kim, Kyoung-O
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.71-76
    • /
    • 2009
  • The GK immersed tunnel as a part of Busan-Geoje Fixed Link Project, is the first attempt in Korea. In spite of existing of many difficulties in construction like the absent of construction cases in Korea, the connection work under approximately 50 m below sea level and weak ground condition, etc., now eight caissons were installed successfully on the accurate position and we are going to install upto the twelfth caisson in this year. The purpose of this paper is to introduce design and construction conditions of the GK immersed tunnel to advise the tunnel designers who will handle the similar project.

Dynamic Analysis of an Immersed Tunnel using an Effective Stress Model (유효응력모델을 이용한 침매터널의 동적거동 해석)

  • Park, Sung-Sik;Moon, Hong-Duk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.51-58
    • /
    • 2008
  • The George Massey immersed tunnel passes the Fraser River near Vancouver, Western Canada. In this paper, dynamic analysis of the tunnel on sandy soils was performed using an effective stress constitutive model called UBCSAND. This model is able to calculate pore pressure rise and resulting tunnel deformation due to cyclic loading. Centrifuge tests conducted at RPI are used to verify the model performance. Centrifuge tests consist of 3 models: Model 1 is designed for an original ground condition, Model 2 for a ground improvement by compaction method, Model 3 for a ground improvement by gravel drainage. The results of centrifuge Model 1 are presented and compared with predictions of UBCSAND model. This model well captured the results of centrifuge test and therefore can be used to predict dynamic behavior of similar tunnels or underground structures on sandy soils.

  • PDF

Experimental study on the tension of cables and motion of tunnel element for an immersed tunnel element under wind, current and wave

  • Wu, Hao;Rheem, Chang-Kyu;Chen, Wei;Xu, Shuangxi;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.889-901
    • /
    • 2021
  • The tension of cables and motion response significantly affect safety of an immersed tunnel element in the immersion process. To investigate those, a hydrodynamic scale-model test was carried out and the model experiments was conducted under wind, current and wave loads simultaneously. The immersion standby (the process that the position of the immersed tunnel element should be located before the immersion process) and immersion process conditions have been conducted and illustrated. At the immersion standby conditions, the maximum force of the cables and motion is much larger at the side of incoming wind, wave and current, the maximum force of Element-6 (6 cables directly tie on the element) is larger than for Pontoon-8 (8 cables tie on pontoon of the element), and the flexible connection can reduce the maximum force of the mooring cables and motion of element (i.e. sway is expecting to decrease approximate 40%). The maximum force of the mooring cables increases with the increase of current speed, wave height, and water depth. The motion of immersed tunnel element increases with increase of wave height and water depth, and the current speed had little effect on it. At the immersion process condition, the maximum force of the cables decrease with the increase of immersion depth, and dramatically increase with the increase of wave height (i.e. the tension of cable F4 of pontoons at wave height of 1.5 m (83.3t) is approximately four times that at wave height of 0.8 m). The current speed has no much effect on the maximum force of the cables. The weight has little effect on the maximum force of the mooring cables, and the maximum force of hoisting cables increase with the increase of weight. The maximum value of six-freedom motion amplitude of the immersed tunnel element decreases with the increase of immersion depth, increase with the increase of current speed and wave height (i.e. the roll motion at wave height of 1.5 m is two times that at wave height of 0.8 m). The weight has little effect on the maximum motion amplitude of the immersed tunnel element. The results are significant for the immersion safety of element in engineering practical construction process.

A Study on the Behavior of George Massey Immersed Tunnel during Earthquake (지진 시 George Massey 침매터널의 거동에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.221-230
    • /
    • 2008
  • The George Massey immersed tunnel passes the Fraser River near Vancouver, Western Canada. The tunnel was founded on sandy soils and its behavior during earthquake was analyzed by an effective stress constitutive model called UBCSAND. This model is able to calculate pore pressure rise and resulting tunnel movements due to cyclic loading. Centrifuge tests conducted at Rensselaer Polytechnic Institute (RPI) were used to verify the model performance. The centrifuge tests consisted of 2 models: Model 1 was designed for an original ground condition, Model 2 for a ground improvement by densification. In Model 1, large deformation of the tunnel was observed due to liquefaction of surrounding soil. Because of the densified zones around the tunnel the vertical and horizontal displacements of the tunnel in Model 2 was 50% less than Model 1. Measured excess pore pressures, accelerations, and displacements from centrifuge tests were in close agreement with the predictions of UBCSAND model. Therefore, the model can be used to predict seismic behavior of immersed tunnels on sandy soils and optimize liquefaction remediation methods.