• Title/Summary/Keyword: immature oocytes

Search Result 229, Processing Time 0.022 seconds

Effect of Co-Culture with Mammalian Spermatozoa on In Vitro Maturation of Porcine Cumulus-Enclosed Germinal Vesicle Oocytes

  • Kim Byung Ki
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.235-240
    • /
    • 2004
  • In vitro maturation of denuded porcine immature oocytes can be enhanced by co-incubation with spermatozoa even before fertilization. This study was to determine whether the addition of spermatozoa into the culture medium could influence the nuclear maturation of porcine cumulus-enclosed germinal vesicle (GV) oocytes. Cumulus-oocyte complexes (COCs) were collected from follicles of 3- to 5-mm diameter. Porcine COCs were cultured in tissue culture medium containing spermatozoa. After 48 h culture, oocytes were examined for evidence of GV breakdown, metaphase I, anaphase-telophase I, and metaphase II. The proportion of oocytes reaching at metaphase II was significantly (P < 0.05) increased in the oocytes cultured in media containing spermatozoa compared to those in media without spermatozoa (52.3% vs 12.5%). No difference in the percentage of metaphase II was observed among the different periods of spermatozoa exposure and among the spermatozoa from different species. The proportion of oocytes reaching metaphase II was significantly different between high and low concentrations of spermatozoa. The present study suggests that manunalian spermatozoa contain a substance(s) that improves nuclear in vitro maturation of porcine cumulus-enclosed GV oocytes. Enhancing effect of spermatozoa for in vitro maturation of oocytes is a highly dose-dependent.

Effect of Co-culture with Spermatozoa on the Resumption of Meiosis in Porcine Germinal Vesicle Oocytes Arrested with Meiotic Inhibitors

  • Kim, Byung-Ki
    • Reproductive and Developmental Biology
    • /
    • v.29 no.4
    • /
    • pp.223-227
    • /
    • 2005
  • In vitro maturation of porcine immature cumulus-enclosed oocytes can be enhanced by co-incubation with spermatozoa even before fertilization. The aim of this study was to determine whether the addition of spermatozoa into the culture medium can stimulate the meiosis resumption of porcine cumulus-enclosed oocytes arrested at germinal vesicle (GV). Cumulus-enclosed oocytes (CEOs) were collected from follicles of 3 to 5mm diameter. Porcine CEOs were cultured in tissue culture medium containing various meiosis inhibitors and spermatozoa. Oocytes were examined for evidence of GV and GV breakdown after 24 h culture. After 24 h culture $43.8\%$ of oocytes cultured in only TCM 199 remained at GV stage whereas $56.2\%$ of oocytes were able to resume meiosis. When porcine CEOs were cultured in the medium with meiosis inhibitor such as, dibutyryl cAMP (dbcAMP) and forskolin (Fo), more than $90\%$ of oocytes were not able to resume meiosis. However, co-culture of porcine CEOs with spermatozoa was able to overcome the inhibitory effect of dbcAMP and Fo. Irrespective of the presence of 3-isobutyl-1-methylxanthine (IBMX), no difference was observed in the proportion of oocyte reached germinal vesicle breakdown (GVBD). The present study suggests that dbcAMP and Fo prevent the spontaneous maturation of competent oocyte in culture after isolation from follicles and that mammalian spermatozoa contain a substance(s) that improves meiosis resumption in vitro of porcine cumulus-enclosed oocytes.

Effects of Melatonin on the Meiotic Maturation of Mouse Oocytes in vitro (생쥐 난자의 체외 성숙에 미치는 Melatonin의 영향)

  • Ahn, Hee-Jin;Bae, In-Ha
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.3
    • /
    • pp.155-168
    • /
    • 2004
  • Objective: Melatonin, which is secreted by pineal gland play an important role in the regulation of ovarian function via seasonal rhythm and sleep in most mammals. It also has a role in the protection of cells by removing toxic oxygen free radicals brought about by metabolism. In the present study, effects of melatonin on the mouse oocyte maturation were examined using two different culture conditions provided with 5% or 21% oxygen concentration. Material and Method: Immature mouse oocytes were obtained from the ovarian follicles of $3{\sim}4$ weeks old ICR strain mice intraperitoneally injected with 5 I.U. PMSG 44 hour before. Under stereomicroscope, morphologically healthy oocytes with distinct germinal vesicle (GV) were liberated from the graafian follicles and collected using mouth-controlled micropipette. They were then cultured for 17 hour at $37^{circ}C$, 5% $CO_2$ and 21% $O_2$ (95% air) or 5% $CO_2$, 5% $O_2$ and 90% $N_2$. New modified Hank's balanced salt solution (New MHBS) was used as a culture medium throughout the experiments. Effects of melatonin were examined at a concentration of $0.0001{\mu}M$, $0.01{\mu}M$ or $1.0{\mu}M$. For the prevention of spontaneous maturation of immature oocytes during culture, dibutyryl cyclic AMP (dbcAMP) and/or hypoxanthine were included in the medium. Results: Under 21% oxygen condition, oocytes cultured in the presence of $0.01{\mu}M$ melatonin showed a significantly higher maturation rates, in terms of germinal vesicle breakdown (95.0% vs 89.0%) and polar body formation (88.1% vs 75.4%), compared to those cultured with $0.0001{\mu}M$ or $1.0{\mu}M$ melatonin. However, no difference was observed in oocytes cultured under 5% oxygen whether they were treated with melatonin or not. In the presence of $0.01{\mu}M$ melatonin, oocytes either cultured under 21% or 5% oxygen exhibited no difference in the polar body formation (85.6% vs 86.7%). However, in the absence of melatonin, oocytes cultured under 21% oxygen exhibited lower polar body formation (74.7%). When oocytes were cultured in the presence of dbcAMP alone or with varying concentrations of melatonin, those treated with both compounds always showed better maturation, i.e., germinal vesicle breakdown and polar body formation, compared to those cultured with dbcAMP alone. At the same concentration of melatonin, however, oocytes exposed to 21% oxygen showed poor maturation than those to 5% oxygen. Similar results were obtained from the experiments using hypoxanthine instead of dbcAMP. Conclusion: Based upon these results, it is suggested that melatonin could enhance the meiotic maturation of mouse oocytes under 21% oxygen concentration, and release oocytes from the meiotic arrest by dbcAMP or hypoxanthine regardless of the concentration of oxygen, probably via the removal of oxygen free radicals.

Effects of Sera, HEPES and Granulosa Cells Added to Culture Medium on In Vitro Maturation of Extrafollicular Bovine Oocytes (배지에 첨가한 혈청, HEPES 및 과립막세포가 난포외 소 난자의 체외성숙에 미치는 영향)

  • Hur Jun-Hoi;Hwang Woo-Suk;Jo Coons-Ho
    • Journal of Veterinary Clinics
    • /
    • v.7 no.1
    • /
    • pp.419-427
    • /
    • 1990
  • Immature bovine oocytes were cultured to investigate whether the addition of FCS(10% or 20% ), CS (10%or 20% ) or BSA(5mg/ml) to culture medium with or without HEPES and co-culture with granulosa cells affect the frequency of in vitro maturation of extrafollicular bovine oocytes. After culture, the maturation rates were examined by the presence of 1st polar body and nuclear configuration. The maturation rate when FCS and CS as protein supplement were added to culture medium with or without HEPES was significantly higher than when BSA was added, and the maturation rate of extrafollicular bovine oocytes co-cultured with granulosa cells was higher than that cultured without granulosa cells, but there was no significant difference. FCS and CS were shown to be superior protein supplement when compared to BSA, and serum concentration, HEPES and co-culture with granulosa cells did not affect the in vitro-maturation of extrafollicular bovine oocytes.

  • PDF

Guanosine Regulates Germinal Vesicle Breakdown (GVBD) in Mouse Oocytes

  • Cheon Yong-Pil
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.267-273
    • /
    • 2004
  • Maturation of oocytes is maintained by complex procedures along with follicular genesis and is a critical step for embryonic development. Purine known as an oocyte maturation regulator is present in follicular fluid. In this study, the roles of guanosine as a strong inhibitor of GVBD and a modulator of cyclic GMP concentration in ooyctes were revealed. Denuded immature oocytes were treated with guanosine, and the maturation rates and cGMP concentration of oocytes were measured. GVBD was blocked in a concentration dependent manner by guanosine, but this effect was reversible. However, GVBD was lagged yet not significant by adenosine. Both guanosine and adenosine modified cGMP concentration in oocytes. The characteristic of the guanosine-treated oocyte was significantly higher cGMP compared with the adenosine-treated oocyes at initial time of the maturation. Based these results, guanosine may be a strong and reversible GVBD inhibitor. Although the precise mechanism of guanosine presently is unclear, the results suggest that guanosine may lead the accumulation of cGMP in oocyte cytoplasm, which in turn suppresses GVBD.

Epigenetic modification of long interspersed elements-1 in cumulus cells of mature and immature oocytes from patients with polycystic ovary syndrome

  • Pruksananonda, Kamthorn;Wasinarom, Artisa;Sereepapong, Wisan;Sirayapiwat, Porntip;Rattanatanyong, Prakasit;Mutirangura, Apiwat
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.2
    • /
    • pp.82-89
    • /
    • 2016
  • Objective: The long interspersed elements (LINE-1, L1s) are a group of genetic elements found in large numbers in the human genome that can translate into phenotype by controlling genes. Growing evidence supports the role of epigenetic in polycystic ovary syndrome (PCOS). The purpose of this study is to evaluate the DNA methylation levels in LINE-1 in a tissue-specific manner using cumulus cells from patients with PCOS compared with normal controls. Methods: The study included 19 patients with PCOS and 22 control patients who were undergoing controlled ovarian hyperstimulation. After oocyte retrieval, cumulus cells were extracted. LINE-1 DNA methylation levels were analysed by bisulfite treatment, polymerase chain reaction, and restriction enzyme digestion. The Connection Up- and Down-Regulation Expression Analysis of Microarrays software package was used to compare the gene regulatory functions of intragenic LINE-1. Results: The results showed higher LINE-1 DNA methylation levels in the cumulus cells of mature oocytes in PCOS patients, 79.14 (${\pm}2.66$) vs. 75.40 (${\pm}4.92$); p=0.004, but no difference in the methylation of cumulus cells in immature oocytes between PCOS and control patients, 70.33 (${\pm}4.79$) vs. 67.79 (${\pm}5.17$); p=0.155. However, LINE-1 DNA methylation levels were found to be higher in the cumulus cells of mature oocytes than in those of immature oocytes in both PCOS and control patients. Conclusion: These findings suggest that the epigenetic modification of LINE-1 DNA may play a role in regulating multiple gene expression that affects the pathophysiology and development of mature oocytes in PCOS.

Effects of BMI-1026, A Potent CDK Inhibitor, on Murine Oocyte Maturation and Metaphase II Arrest

  • Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.71-76
    • /
    • 2007
  • Previous studies have shown that BMI-1026 is a potent inhibitor of the cyclin-dependent kinases (cdk). In cell culture, the compound also arrests G2/M strongly and G1/S and S weakly. Two key kinases, cdk1 (p34cdc2 kinase) and mitogen-activated protein (MAP) kinase (erk1 and 2), perform crucial roles during oocyte maturation and, later, metaphase II (MII) arrest. In mammalian oocytes, both kinases are activated gradually around the time of germinal vesicle breakdown (GVBD) and maintain high activity in eggs arrested at metaphase II. In this study, we examined the effects of BMI-1026 on GVBD and MII arrest in mouse oocytes. BMI-1026 inhibited GVBD of immature oocytes and activated MII-arrested oocytes in a concentration-dependent manner, with more than 90% of oocytes exhibiting GVBD inhibition and MII activation at 100 nM This is approximately 500$\sim$1,000 times more potent than the activity reported for the cdk inhibitors roscovitine (${\sim}50{\mu}M$) and butyrolactone (${\sim}100{\mu}M$). Based on the results of previous in vitro kinase assays, we expected BMI-1026 to inhibit only cdk1 activation in oocytes and eggs, not MAP kinase. However, in our cell-based system, it inhibited the activity of both kinases. We also found that the effect of BMI-1026 is reversible. Our results suggest that BMI-1026 inhibits GVBD and activates MII-arrested oocytes efficiently and reversibly and that it also inhibits both cdk1/histone HI kinase and MAP kinase in mouse oocytes.