• Title/Summary/Keyword: imidacloprid

Search Result 122, Processing Time 0.033 seconds

Physicochemical Characteristics and Efficacy of Controlled-release Insecticide Formulation (방출조절형(放出調節型) 살충성(殺蟲性) 농약제제(農藥製劑)의 특성(特性)과 약효(藥效)에 관한 연구(硏究))

  • Kim, Jin-Hwa;Oh, Byung-Youl;Oh, Kyeong-Seok;Kim, Sung-Kee;Kim, Mee-Hea;Kim, Young-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.289-295
    • /
    • 1995
  • This study was carried out to develop a controlled-release insecticide formulation for the control of rose aphid (Macrosiphum ibarae) in rose and cotton aphid (Myzus persicae) in chrysanthemum (Dendranthema grandiflorum var. Meibung) in greenhouse. Imidacloprid[1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] was chosen as a toxicant. Two synthetic polymers, low density polyethylene(LDPE) and ethylene vinyl acetate(EVA), were used as polymer matrices. The tested plastic sheet formulations were prepared by heat-aided extrusion procedures after mixing imidacloprid technical and the polymers of three different combinations, and physicochemical properties as well as efficacy of the formulations were investigated. The amounts of imidacloprid recovered and incorporated in the formulations were recorded over 90% and 80%, respectively. Release of the active ingredient from the formulations was remarkably affected by mixing rates of polymers. The active ingredient in the formulations was chemically unstable with over 10% degradation rates after 90 day storage at $50{\pm}2^{\circ}C$. The residual amounts of imidacloprid in the soil treated with the formulations were paralleled with the release pattern of the formulations. Efficacy of the formulations on rose and cotton aphid was maintained over 90% even 120days after treatment under greenhouse.

  • PDF

Evaluation of Toxicity of Pesticides against Honeybee (Apis mellitera) and Bumblebee (Bombus terrestris) (꿀벌과 서양뒤영벌에 대한 농약의 독성평가)

  • Ahn, Ki-Su;Oh, Mann-Gyun;Ahn, Hee-Geun;Yoon, Chang-Mann;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.382-390
    • /
    • 2008
  • This study was performed to evaluate the acute toxicity and residual toxicity of the 69 kinds of agrochemicals (41 insecticides, 18 fungicides, and 10 acaricides) against honeybee, Apis mellifera and bumblebee, Bombus terrestris. According to the IOBC standard, the toxicity showed below 30% was classified as non-toxic. Among 41 insecticides, five insecticides (acetamiprid, chlorfenapyr, thiacloprid, milbemectin, and buprofezin+amitraz) against the honeybee; eight insecticides (methomyl, thiodicarb, acetamiprid, chlorfenapyr, thiacloprid, abamectin, spino sad, buprofezin+amitraz) against the bumblebee did not show any toxic effect. Therefore, it thought to being safe. Other 18 fungicides and 10 acaricides were safe against the honeybee and bumblebee. In residual toxicity against the honeybee, eight insecticides (dichlorvos, methomyl, imidachlorprid, emamectin benzoate, spinosad, cartap hydrochloride, chlorfenapyr, and endosulfan) among 41 insecticides tested were safe at three days after treatment; however, sixteen insecticides (dimethoate, fenitrothion, fenthion, methidathion, phenthoate, pyraclofos, fenpropathrin, clothianidin, dinotefuran, thiamethoxam, abamectin, acetamiprid+ethofenprox, acetamiprid+indoxacarb, bifenthrin+imidacloprid, ethofenprox+phenthoate, imidacloprid+methiocarb) still remain high toxicity at eleven days after treatment. Against the bumblebee, residual toxicity showed as safe in seven insecticides (dimethoate, methidation, a-cypermethion, ethofenprox, indoxcarb, chlorpyrifos+a-cypennethrin, esfenvalerate+fenitrochion) at three days after treatment; however, eight insecticides (fenitrothion, pyraclofos, clothianidin, fipronil, acetamiprid+ethofenprox, chlorpyrifos+bifenthrin, ethofenprox+phenthoate, imidacloprid+methiocarb) still showed high toxicity at seven days after treatment. From above results, it will be useful information to select insecticides being safe and effective against the honeybee and bumblebee.

Screening of Insecticide to Control Rhophalosiphum nymphaeae for Alisma plantago as Second Crop in Paddy Field

  • Kwon, Byung-Sun;Lim, June-Taeg;Shin, Jeong-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.17-19
    • /
    • 2003
  • The purpose of this study was to evaluate the effect of pesticides on insect pest control of Rhophalosiphum nymphaeae, growth characteristies and dry root yield from the cultivated after early maturing rice cropping. All pesticides treated had no effect on the growh period, flowering rate of Alisma plantago. The major pesticides were methomyl-Lf, 24.1 %, imidacloprid-Wp, 10%, carbosulfan-Wp, 20%, and methomyl-Wp, 45%. Dry yield of root were increased largely with imidacloprid-Wp, 10% (10g/20$\ell$), pesticide than the other pesticides and control. All pesticides were had no injury with recommended concentration. On the other hand all pesticides were slightly harmful in the double dosage level for the Alisma plantago.

Avoidance Behavior of Honey bee, Apis mellifera from Commonly used Fungicides, Acaricides and Insecticides in Apple Orchards

  • Kang, Moonsu;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.32 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Avoidance behavior is an important life history strategy to survive hazardous environment. The experiment was conducted to detect the avoidance tendency of the honeybee Apis mellifera against commonly used pesticides in apple production. Choice test given only 50% sucrose solution and pesticide-mixed sucrose solution as food estimated the avoidance in laboratory. Most of the acaricides and fungicides tested were shown avoided. Among insecticides, honeybee showed strong avoidance to cyhexatine, carbosulfan and fenpyroximate but low to diflubenzuron, tebufenpyrad, and acrinathrin. Avoidance behavior to neonicotinoid insecticides showed bifurcated; highly avoided from thiacloprid, acetamiprid while less avoided from imidacloprid, thiamethoxam and dinotefuran. From the field study, abamectin, fenthion, amitraz and acequinocyl showed highly avoided while fungicide of fenarimol, acaricides of acrinathrin and phosphamidon, IGR insecticide of diflubenzuron, neonicotinoid insecticide of imidacloprid, and carbamate insecticide of carbaryl showed less avoidance in the field. These results partly explained high bee poisoning from carbaryl in apple flowering period, and neonicotinoids during season.

Selection of low toxic insecticides for phytoseiid predatory mites, Amblyseius cucumeris and Amblyseius fallacis (Amblyseius cucumeris 및 Amblyseius fallacis에 대한 저독성약제 선발)

  • Choi, Byeong-Ryeol;Hilton, S.A.;Broadbent, A.B.
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.296-301
    • /
    • 2003
  • This study was conducted to select low toxic insecticides against natural enemies, and to evaluate resistance stability and cross-resistance to resistance strain for the fulfillment of integrated pest management development. Toxicity of imidacloprid and spinosad to Amblyseius cucumeris was relatively low regardless of the adopting test methods. In addition, those to the Amblyseius fallacis was also low by slide dipping method. The slide dipping method was useful to eliminate repellency effect by mites to the tested insecticides. Mortality of A. fallacis to deltamethrin recorded in 1994 and 1999 was 21.6% and 7.4%, respectively. Meanwhile, the permethrin-resistanct strain of A. fallacis was maintained its resistance to deltamethrin. However, the cross-resistance to the newly introduced insecticides namely imidacloprid, fipronil, chlorfenapyr, abamectin, and spinosad. was relatively low.

Color Change and Resistance to Subterranean Termite Attack of Mangium (Acacia mangium) and Sengon (Falcataria moluccana) Smoked Wood

  • HADI, Yusuf Sudo;MASSIJAYA, Muh Yusram;ABDILLAH, Imam Busyra;PARI, Gustan;ARSYAD, Wa Ode Muliastuty
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Indonesian log production is dominated by young trees harvested from plantation forests. The timber contains of sapwood and juvenile wood, which are not resistant to termite attack. Smoking treatment can enhance wood resistance to termite attack, but it also changes the color. Specimens of mangium (Acacia mangium) and sengon (Falcataria moluccana) wood were exposed for 1, 2, and 3 weeks to smoke produced from the pyrolysis of salam (Syzygium polyanthum) wood. The color change of the wood was measured using the CIELab method. In addition, wood specimens were exposed to subterranean termites (Coptotermes curvignathus Holmgren) under laboratory conditions. Untreated and imidacloprid-preserved wood samples were also prepared for comparison purposes. The results showed that the color of smoked wood differed from that of untreated wood, and the color change for sengon was greater than for mangium. In addition, the 1-week smoking period changed the wood color less than the 2- and 3-week periods, which did not differ. Imidacloprid-preserved wood had distinctive color changes compared to untreated wood. Untreated mangium wood had moderate resistance to subterranean termite attack (resistance class III), while sengon had very poor resistance (resistance class V). Salam wood smoke enhanced wood resistance to termite attack, and smoke treatment of 1 week for mangium and 2 weeks for sengon resulted in the wood becoming very resistant (resistance class I). Both types of smoked wood were more resistant to subterranean termite attack than imidacloprid-preserved wood (average class II resistance).